精英家教网 > 高中数学 > 题目详情
(本小题满分12分)在如图所示的多面体中,底面△ABC是边长为2的正三角形,DAEC均垂直于平面ABC,且DA = 2,EC = 1.
(Ⅰ)求点A到平面BDE的距离;
(Ⅱ)求二面角BEDA的正切值.

(Ⅰ)∵DE = BE =BD =
SBDE =,设点A到平面BDE的距离为h
又∵SABC =VBADE = VABDE
   ∴h =
即点A到平面BDE的距离为. ……6分
(Ⅱ)∵DA⊥平面ABC,∴平面DACE⊥平面ABC
AC的中点M,连结BM,则BMACBM⊥平面DACE
MMNDE,交DEN,连结BN,则BNDE
∴∠BNM是所求二面角的平面角.
ACDE的延长线相交于点P,∵DA = 2EC,∴CP = 2
由△MNP∽△DAPMP = 3,DA = 2
DP =,∴MN =
又∵BM =,∴tan∠BNM =. ……12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
图甲是一个几何体的表面展开图,图乙是棱长为的正方体。
(Ⅰ)若沿图甲中的虚线将四个三角形折叠起来,使点重合,则可以围成怎样的几何体?请求出此几何体的体积;
(Ⅱ)需要多少个(I)的几何体才能拼成一个图乙中的正方体?请按图乙中所标字母写出这几个几何体的名称;
(Ⅲ)在图乙中,点为棱上的动点,试判断与平面是否垂直,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知四棱锥的三视图如下图所示,其中主视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点.
(1)求证:
(2)若五点在同一球面上,求该球的体积.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E、F分别为A1D1CC1 的中点.

(1)求证:EF∥平面ACD1
(2)求三棱锥E-ACD1的体积与正方体
ABCD -A1B1C1D1的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个四面体的所有棱长都为,四个顶点在同一个球面上,则此球的表面积为
A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知四棱锥,底面为矩形,侧棱,其中为侧棱上的两个三等分点,如图所示.

(Ⅰ)求证:
(Ⅱ)求异面直线所成角的余弦值;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分
如图,已知正三棱柱的底面边长是、E是、BC的中点,AE=DE

(1)求此正三棱柱的侧棱长;
(2)求正三棱柱表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分,第(1)小题6分,第(2)小题8分)
四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60,在四边形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.

(1)求四棱锥P-ABCD的体积;
(2)求异面直线PA与BC所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正三棱锥A-BCD中,在棱上,在棱上.并且(0<l<+∞),设a为异面直线所成的角,b 为异面直线EFBD所成的角,则ab的值是
A.B.C.D.与的值有关

查看答案和解析>>

同步练习册答案