精英家教网 > 高中数学 > 题目详情
已知f(x4)=log4x,则f(
1
16
)=
 
考点:函数的值
专题:计算题
分析:由f(x4)=log4x,得f(
1
16
)=f((
1
2
4)=log4
1
2
,根据对数的运算法则可求.
解答: 解:由f(x4)=log4x,得f(
1
16
)=f((
1
2
4)=log4
1
2
=-
1
2

故答案为:-
1
2
点评:本题考查函数值的求解、对数的运算法则,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点M(1,f(1))处的切线方程;
(Ⅱ)若a>0,求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)lg(0.1)3
(2)log26-log23.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x+
1
x+1
(x>-1)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{
1
an-1
}
是公差为1的等差数列,且a1=2,则数列{lgan}的前9项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=
1
3
,a2+a5=4,若an=33,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

两等差数列{an}和{bn}前n项和分别为Sn,Tn,且
Sn
Tn
=
7n+2
n+3
,则
a4
b4
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-a)|x-a|+b(a,b都是实数).则下列叙述中,正确的序号是
 
.(请把所有叙述正确的序号都填上)
①对任意实数a,b,函数y=f(x)在R上是单调函数;
②存在实数a,b,函数y=f(x)在R上不是单调函数;
③对任意实数a,b,函数y=f(x)的图象都是中心对称图形;
④存在实数a,b,使得函数y=f(x)的图象都不是中心对称图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;
(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).
关于函数f(x)=(ex)*
1
ex
的性质,有如下说法:
①函数f(x)的最小值为3;②函数f(x)为偶函数;③函数f(x)的单调递增区间为(-∞,0].
其中所有正确说法的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案