精英家教网 > 高中数学 > 题目详情
如图,直角梯形ABCE中,,D是CE的中点,点M和点N在ADE绕AD向上翻折的过程中,分别以的速度,同时从点A和点B沿AE和BD各自匀速行进,t 为行进时间,0
(1)      求直线AE与平面CDE所成的角;
(2)      求证:MN//平面CDE。
(Ⅰ)450(Ⅱ)证明见解析
(1)因,所以AD⊥平面CDE,ED是AE在平面CDE上的射影,∠AED=450,所以直线AE与平面CDE所成的角为450………………………………4分
(2)解法一:如图,取AB、AD所在直线为x轴、y轴建立直角坐标系A—xyz.
 ………5分
,  
…………9分

,得,而是平面CDE的一个法向量,且平面CDE,
所以MN//平面CDE…………………………………………………………………………14分
解法二:设在翻转过程中,点M到平面CDE的距离为,点N到平面CDE的距离为,则,同理
所以,故MN//平面CDE……………………………………………………………14分
解法三:如图,过M作MQ//AD交ED于点Q,
过N作NP//AD交CD于点P,
连接MN和PQ…………………………………5分
设⊿ADE向上翻折的时间为t,则………………7分
,点D是CE的中点,得,四边形ABCD为正方形,⊿ADE为等腰三角形. ……………………10分
在Rt⊿EMQ和Rt⊿DNP中,ME=ND,∠MEQ=∠NDP=450,所以Rt⊿EMQ≌Rt⊿DNP,
所以MQ//NP且MQ=NP,的四边形MNPQ为平行四边形,所以MN//PQ,因平面CDE,
平面CDE,所以MN//平面CDE……………………………………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在棱长AB=AD=2,AA1=3的长方体AC1中,点E是平面BCC1B1上动点,点F是CD的中点.
(Ⅰ)试确定E的位置,使D1E⊥平面AB1F;
(Ⅱ)求二面角B1—AF—B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.
(Ⅰ)求证:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求点P到平面QBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为的正方体中,为棱的中点.
(Ⅰ)求证:平面;   (Ⅱ)求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD-A1B1C1D1的底面是
梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点。点P到直线
AD1的距离为
⑴求证:AC∥平面BPQ
⑵求二面角B-PQ-D的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD,M,N分别是AD,BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P点是线段DN上一动点,求P到BM距离的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱
CD上的动点.
(I)试确定点F的位置,使得D1E⊥平面AB1F;
(II)当⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,,,底面, ,直线与底面角,点分别是的中点.
(1)求二面角的大小;
(2)当的值为多少时,为直角三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,底面是正方形的四棱锥,平面⊥平面===2.
(I)求证:
(II)求直线与平面所成的角的正弦值.

查看答案和解析>>

同步练习册答案