本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力,满分12分.
解法一:(I)连结A
1B,则A
1B是D
1E在面ABB
1A;内的射影
∵AB
1⊥A
1B,∴D
1E⊥AB
1,
于是D
1E⊥平面AB
1F
D
1E⊥AF.
连结DE,则DE是D
1E在底面ABCD内的射影.
∴D
1E⊥AF
DE⊥AF.
∵ABCD是正方形,E是BC的中点.
∴当且仅当F是CD的中点时,DE⊥AF,
即当点F是CD的中点时,D
1E⊥平面AB
1F.…………6分
(II)当D
1E⊥平面AB
1F时,由(I)知点F是CD的中点.
又已知点E是BC的中点,连结EF,则EF∥BD. 连结AC,
设AC与EF交于点H,则CH⊥EF,连结C
1H,则CH是
C
1H在底面ABCD内的射影.
C
1H⊥EF,即∠C
1HC是二面角C
1—EF—C的平面角.
在Rt△C
1CH中,∵C
1C=1,CH=
AC=
,
∴tan∠C
1HC=
.
∴∠C
1HC=arctan
,从而∠AHC
1=
.
故二面角C
1—EF—A的大小为
.
解法二:以A为坐标原点,建立如图所示的空间直角坐标系
(1)设DF=
x,则A(0,0,0),B(1,0,0),D(0,1,0),
A
1(0,0,1),B(1,0,1),D
1(0,1,1),E
,F(
x,1,0)
(1)当D
1E⊥平面AB
1F时,F是CD的中点,又E是BC的中点,连结EF,则EF∥BD. 连结AC,设AC与EF交于点H,则AH⊥EF. 连结C
1H,则CH是C
1H在底面ABCD内的射影.
∴C
1H⊥EF,即∠AHC
1是二面角C
1—EF—A的平面角.