精英家教网 > 高中数学 > 题目详情
如图,已知平行六面体的底面ABCD是菱形,且,(1)证明:

(II)假定CD=2,,记面为α,面CBD为β,求二面角α -BD -β的平面角的余弦值;
(III)当的值为多少时,能使?请给出证明.
(1)证明见解析。
(II)
(III)当时,能使。证明见解析。


(I)证明:连结、AC,AC和BD交于.,连结,∵四边形ABCD是菱形,∴AC⊥BD,BC=CD,可证
,但AC⊥BD,所以,从而;            
(II)解:由(I)知AC⊥BD,是二面角α—BD—β的平面角,在中,BC=2,  ∵∠OCB=60°,,故C1O=,即C1O=C1C,作,垂足为H,∴点H是.C的中点,且,所以;
(III)当时,能使
证明一:∵,所以,又,由此可得,∴三棱锥是正三棱锥
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,

(Ⅰ)求证:
(Ⅱ)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形为菱形,,两个正三棱锥(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等,点分别在上,且.
(Ⅰ)求证:;
(Ⅱ)求平面与底面所成锐二面角的平面角的正切值;
(Ⅲ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在北纬纬线上有A,B两点,设该纬线圈上A,B两点的劣弧长为,(R为地球半径),则A,B两点间的球面距离为__________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱中,,,点分别在棱上,且
(Ⅰ)求平面与平面所成锐二面角的大小;
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱
CD上的动点.
(I)试确定点F的位置,使得D1E⊥平面AB1F;
(II)当⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知长方体
直线与平面所成的角为垂直
的中点.
(1)求异面直线所成的角;
(2)求平面与平面所成的二面角;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P—ABCD的底面ABCD为等腰梯形,AB//CD,AC⊥DB,ACBD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=PB⊥PD.
(Ⅰ)求异面直线PDBC所成角的余弦值;
(Ⅱ)求二面角P—AB—C的大小;
(Ⅲ)设点M在棱PC上,且,问为何值时,PC⊥平面BMD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥中,底面正方形的边长为2
(1)求点到平面的距离;
(2)求直线与平面所成角的大小;
(3)求以为半平面的二面角的正切值。

查看答案和解析>>

同步练习册答案