精英家教网 > 高中数学 > 题目详情

【题目】对任意实数x,[x]表示不超过x的最大整数,如[3.6]=3,[﹣3.6]=﹣4,关于函数f(x)=[ ﹣[ ]],有下列命题: ①f(x)是周期函数;
②f(x)是偶函数;
③函数f(x)的值域为{0,1};
④函数g(x)=f(x)﹣cosπx在区间(0,π)内有两个不同的零点,
其中正确的命题为(把正确答案的序号填在横线上).

【答案】①③
【解析】解:∵f(x+3)=[ ﹣[ ]]=[ +1﹣[ +1]]=f(x),∴f(x)是周期函数,3是它的一个周期,故①正确. f(x)=[ ﹣[ ]]= ,结合函数的周期性可得函数的值域为{0,1},则函数不是偶函数,故②错,③正确.
f(x)=[ ﹣[ ]]= ,故g(x)=f(x)﹣cosπx在区间(0,π)内有3个不同的零点 ,2,故④错误.
则正确的命题是①③,
所以答案是:①③
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某水果店购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来30天的销售单价P(元/kg)与时间t(天)之间的函数关系式为 ,销售量Q(kg)与时间t(天)的函数关系式为Q=﹣2t+120.
(Ⅰ)该水果店哪一天的销售利润最大?最大利润是多少?
(Ⅱ)为响应政府“精准扶贫”号召,该店决定每销售1kg水果就捐赠n(n∈N)元给“精准扶贫”对象.欲使捐赠后不亏损,且利润随时间t(t∈N)的增大而增大,求捐赠额n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣1,0),B(1,0),直线AM与直线BM相交于点M,直线AM与直线BM的斜率分别记为kAM与kBM , 且kAMkBM=﹣2 (Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过定点F(0,1)作直线PQ与曲线C交于P,Q两点,△OPQ的面积是否存在最大值?若存在,求出△OPQ面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,已知
(Ⅰ)求sinC的值;
(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列 的公差 ,它的前 项和为 ,若 ,且 成等比数列.
(1)求数列 的通项公式 及前 项和
(2)令 ,求数列 的前 项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 是公差不为0的等差数列, ,且 成等比数列.
(1)求数列 的通项公式;
(2)设 ,求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2 sinθ. (Ⅰ)写出⊙C的直角坐标方程;
(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的左、右焦点分别为F1 , F2 , 弦AB过F1 , 若△ABF2的内切圆周长为π,A,B两点的坐标分别为(x1 , y1),(x2 , y2),则|y1﹣y2|的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b,c为正实数,且满足abc=1,试证明: + + .

查看答案和解析>>

同步练习册答案