精英家教网 > 高中数学 > 题目详情
已知△ABC的三个内角A、B、C成等差数列,且边a=4,c=3,则b=
13
13
分析:根据三角形内角和定理,结合题意算出B=
π
3
.再由余弦定理,可得b2=a2+c2-2accosB=13,从而得到边b的大小.
解答:解:∵A+B+C=π,且角A、B、C成等差数列,
∴B=π-(A+C)=π-2B,解之得B=
π
3

∵△ABC中,边a=4,c=3,
∴由余弦定理,得b2=a2+c2-2accosB=16+9-2×4×3cos
π
3
=13
因此,b=
13
(舍负)
故答案为:
13
点评:本题给出三角形的内角A、B、C成等差数列,在已知边a、c的情况下求边b的值.着重考查了等差数列的通项公式和用余弦定理解三角形等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点的A、B、C及平面内一点P满足
PA
+
PB
+
PC
=
AB
,下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A、B、C及平面内一点P,若
PA
+
PB
+
PC
=
AB
,则点P与△ABC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点ABC及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ满足:
AB
+
AC
=λ
AP
,则λ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知△ABC的三个顶点坐标分别为A(1,3)、B(3,1)、C(-1,0),求BC边上的高所在的直线方程.
(2)过椭圆
x2
16
+
y2
4
=1
内一点M(2,1)引一条弦,使得弦被M点平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A,B,C及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ 满足:
AB
+
AC
AP
,则λ的值为(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步练习册答案