分析 作出不等式组对应的平面区域,利用目标函数的几何意义,先求出m的值,然后结合数形结合即可得到结论.
解答
解:由z=y-2x,得y=2x+z,
作出不等式对应的可行域,
平移直线y=2x+z,
由平移可知当直线y=2x+z经过点C时,
直线y=2x+z的截距最小,此时z取得最小值-2,
由$\left\{\begin{array}{l}{y-2x=-2}\\{y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,即C(1,0),
将C(1,0)代入x+y+m=0,得m=-1,
即此时直线方程为x+y-1=0,
当直线y=2x+z经过点B时,
直线y=2x+z的截距最大,此时z取得最大值
由$\left\{\begin{array}{l}{2x+y+2=0}\\{x+y-1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-3}\\{y=4}\end{array}\right.$,即B(-3,4),
此时z的最大值为z=4-2×(-3)=10,
故答案为:10
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 5 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(1,3)上是增函数 | B. | 在(1,3)上是减函数 | C. | 最小值为1 | D. | 最大值为0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 等级 | 优秀 | 良好 | 合格 |
| 男生(人) | 16 | x | 8 |
| 女生(人) | 18 | 13 | y |
| 男生 | 女生 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com