精英家教网 > 高中数学 > 题目详情
化简:
[sin(α+β)+sin(α-β)]cos(
π
2
-α)
cos(2π-β)•cos(3π+α)•sin(π-α)
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:原式利用诱导公式及和差化积公式变形,再利用同角三角函数间的基本关系计算即可得到结果.
解答: 解:原式=
2sinαcosβsinα
cosβ(-cosα)sinα
=-2tanα.
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
=(-1,2),
b
=(m,m+3),(m∈R),且
a
b
,则m为(  )
A、-2
B、-1
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若(2x-1)6=a0+a1x+a2x2+…+a6x6,求;
(1)a0
(2)a0+a1+a2+…+a6
(3)a0+a2+a4+a6

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=lnx-ax.
(1)若a=2,求函数f(x)的单调区间;
(2)若函数f(x)≤0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半圆O的直径AB=2,C在BA的延长线上且AC=1,P为半圆上异于A、B的一点,设∠POC=θ.
(1)设PB2+PC2=f(θ),求f(θ)的解析式;
(2)以PC为边作正方形PCMN,求五边形OCMNP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-a
x-2a
(a∈R)
(1)若a=0,解不等式|f(x)|>1;
(2)解关于x的不等式f(x)≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+lnx
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(x))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
1
2
的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得f′(x1)+f′(x2)+f′(x3)+…f′(xk)≥2013成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于点A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求抛物线C的方程;
(2)若
OE
=2(
OA
+
OB
)(O为坐标原点),且点E在抛物线C上,求△EAB的面积;
(3)若点M是抛物线C的准线上的一点,直线MF,MA,MB的斜率分别为k0,k1,k2
求证:当k0为定值时,k1+k2也为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和Sn,且
Sn
1
4
与(an+1)2的等比中项.
(1)求数列{an}的通项公式
(2)若bn=
an
2n
,求{bn}的前n项和Tn
(3)在(2)的条件下,是否存在常数λ,使得数列{
Tn
an+2
}
为等比数列?若存在,求出λ,若不存在,说明理由.

查看答案和解析>>

同步练习册答案