ÒÑÖªÏÂÁнáÂÛ£º
¢ÙÒÑÖªa£¬b£¬cΪʵÊý£¬Ôò¡°b2=ac¡±ÊÇ¡°a£¬b£¬c³ÉµÈ±ÈÊýÁС±µÄ³äÒªÌõ¼þ£»¡¡
¢ÚÂú×ãÌõ¼þa=3£¬b=2
2
£¬A=450
µÄ¡÷ABCµÄ¸öÊýΪ2£»
¢ÛÈôÁ½ÏòÁ¿
a
=(-2£¬1)£¬
b
=(¦Ë£¬-1)
µÄ¼Ð½ÇΪ¶Û½Ç£¬ÔòʵÊý¦ËµÄÈ¡Öµ·¶Î§Îª(-
1
2
£¬+¡Þ)
£»
¢ÜÈôxΪÈý½ÇÐÎÖеÄ×îСÄڽǣ¬Ôòº¯Êýy=sinx+cosxµÄÖµÓòÊÇ(1£¬
2
]
£»¡¡
¢Ýij³§È¥Äê12Ô·ݲúÖµÊÇͬÄêÒ»Ô·ݲúÖµµÄm±¶£¬Ôò¸Ã³§È¥ÄêµÄÔÂƽ¾ùÔö³¤ÂÊΪ
11m
-1
£»
ÔòÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
¢Ü¢Ý
¢Ü¢Ý
£®
·ÖÎö£º¢Ù¸ù¾ÝµÈ±ÈÊýÁеĶ¨Ò壬¿ÉÒÔÅжϢٵÄÕæ¼Ù£»
¢ÚÏÈÀûÓÃÕýÏÒ¶¨ÀíÇó³ösinBµÄÖµ£¬È»ºó¸ù¾Ý´ó±ß¶Ô´ó½ÇµÄÔ­Àí¿ÉÇó³ö½ÇB£¬´Ó¶øÈ·¶¨Âú×ãÌõ¼þµÄÈý½ÇÐεĸöÊý£®
¢ÛÓÉÏòÁ¿µÄÊýÁ¿»ý¶¨Ò幫ʽ£¬¿ÉÖªÁ½¸öÏòÁ¿ÊýÁ¿»ý´óÓÚ-1СÓÚ0£¬¼´ÊýÁ¿»ýСÓÚ0 ÇÒÁ½ÏòÁ¿²»Îª·´ÏòÏòÁ¿£®
¢ÜÓÉxΪÈý½ÇÐÎÖеÄ×îСÄڽǣ¬¿ÉµÃ0£¼x¡Ü
¦Ð
3
¶øy=sinx+cosx=
2
sin£¨x+
¦Ð
4
£©£¬½áºÏÒÑÖªËùÇóµÄxµÄ·¶Î§¿ÉÇóyµÄ·¶Î§£®
¢ÝÏȼÙÉèÔö³¤ÂÊΪp£¬ÔÙ¸ù¾ÝÌõ¼þ¿ÉµÃ£¨1+p£©11=m£¬´Ó¶ø¿É½â³öpÖµ£®
½â´ð£º½â£º¶ÔÓÚ¢Ù£ºa¡¢b¡¢c³ÉµÈ±ÈÊýÁеijäÒªÌõ¼þÊÇb2=ac£¨a•b•c¡Ù0£©£¬¹Ê¢ÙΪ¼ÙÃüÌ⣻
¢Ú£º¡ßa=3£¬b=2
2
£¬A=45¡ã£¬
¡à
a
sinA
=
b
sinB
¼´
3
sin45¡ã
=
2
2
sinB
£¬¡àsinB=
2
3
£¬¡ßa£¾b£¬¡àA£¾B£¬ÔòBÓÐ1½â£¬
Âú×ãÌõ¼þµÄÈý½ÇÐεĸöÊýΪ1£¬¹Ê¢ÚΪ¼ÙÃüÌ⣻
¢ÛÓÉ
a
b
=£¨-2£¬1£©•£¨¦Ë£¬-1£©=-2¦Ë-1£¼0£¬µÃ¦Ë£¾-
1
2
£¬ÈôΪ·´ÏòÏòÁ¿£¬Ôò¦Ë=2
ËùÒÔʵÊý¦ËµÄÈ¡Öµ·¶Î§ÊǦˣ¾-
1
2
£¬ÇҦˡÙ2£¬¼´¦Ë¡Ê£¨-
1
2
£¬2£©¡È£¨2£¬+¡Þ£©
¹ÊʵÊý¦ËµÄÈ¡Öµ·¶Î§Îª£º£¨-
1
2
£¬2£©¡È£¨2£¬+¡Þ£©£®¹Ê¢ÛΪ¼ÙÃüÌ⣻
¢ÜÒòΪxΪÈý½ÇÐÎÖеÄ×îСÄڽǣ¬
ËùÒÔ0£¼x¡Ü
¦Ð
3
£¬y=sinx+cosx=
2
sin£¨x+
¦Ð
4
£©
¡à
¦Ð
4
£¼
¦Ð
4
+x¡Ü
7¦Ð
12
£¬
2
2
£¼sin£¨x+
¦Ð
4
£©¡Ü1
¡à1£¼y¡Ü
2
£®¹Ê¢ÜΪÕæÃüÌ⣻
¢ÝÓÉÌâÒ⣬Éè¸Ã³§È¥Äê²úÖµµÄÔÂƽ¾ùÔö³¤ÂÊΪp£¬Ôò£¨1+p£©11=m£¬¡àp=
11m
-1£¬¹Ê¢ÝΪÕæÃüÌ⣻
¹Ê´ð°¸Îª£º¢Ü¢Ý£®
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊÇÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Óã¬ÆäÖÐÊìÁ·ÕÆÎÕ½âÈý½ÇÐΡ¢µÈ±ÈÊýÁеĶ¨Òå¡¢ÕýÏÒº¯ÊýµÄ²¿·ÖͼÏóµÄÐÔÖÊ¡¢Å¼º¯ÊýµÄ¶¨Òå¼°ÐÔÖʵȻù´¡ÖªÊ¶µãÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÀà±ÈÍÆÀí£º
¢ÙÒÑÖªa£¬b¡ÊR£¬Èôa-b=0£¬Ôòa=b£¬Àà±ÈµÃÒÑÖªz1£¬z2¡ÊC£¬Èôz1-z2=0£¬Ôòz1=z2£»
¢ÚÒÑÖªa£¬b¡ÊR£¬Èôa-b£¾0£¬Ôòa£¾bÀà±ÈµÃÒÑÖªz1£¬z2¡ÊC£¬Èôz1-z2£¾0£¬Ôòz1£¾z2£»
¢ÛÓÉʵÊý¾ø¶ÔÖµµÄÐÔÖÊ|x|2=x2Àà±ÈµÃ¸´ÊýzµÄÐÔÖÊ|z|2=z2£»
¢ÜÒÑÖªa£¬b£¬c£¬d¡ÊR£¬Èô¸´Êýa+bi=c+di£¬Ôòa=c£¬b=d£¬Àà±ÈµÃÒÑÖªa£¬b£¬c£¬d¡ÊQ£¬Èôa+b
2
=c+d
2
£¬Ôòa=c£¬b=d£®
ÆäÖÐÍÆÀí½áÂÛÕýÈ·µÄÊÇ
¢Ù¢Ü
¢Ù¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=
x
x2+1
£®
£¨1£©Çó³öº¯Êýy=f£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±x¡Ê(-
3
4
£¬+¡Þ)
ʱ£¬Ö¤Ã÷º¯Êýy=f£¨x£©Í¼ÏóÔÚµã(
1
3
£¬
3
10
)
´¦ÇÐÏßµÄÏ·½£»
£¨3£©ÀûÓã¨2£©µÄ½áÂÛÖ¤Ã÷ÏÂÁв»µÈʽ£º¡°ÒÑÖªa£¬b£¬c¡Ê(-
3
4
£¬+¡Þ)
£¬ÇÒa+b+c=1£¬Ö¤Ã÷£º
a
a2+1
+
b
b2+1
+
c
c2+1
¡Ü
9
10
¡±£»
£¨4£©ÒÑÖªa1£¬a2£¬¡­£¬anÊÇÕýÊý£¬ÇÒa1+a2+¡­+an=1£¬½èÖú£¨3£©µÄÖ¤Ã÷²ÂÏë
n
k=1
ak
a
2
k
+1
µÄ×î´óÖµ£®£¨Ö»Ö¸³öÕýÈ·½áÂÛ£¬²»ÒªÇóÖ¤Ã÷£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2014½ìɽ¶«Ê¡ÈÕÕÕÊиßÈýÉÏѧÆÚµÚÒ»´ÎÔ¿¼Àí¿ÆÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÏÂÁнáÂÛÖÐÊÇÕæÃüÌâµÄÊÇ__________(ÌîÐòºÅ)£®

¢Ùf(x)£½ax2£«bx£«cÔÚ[0£¬£«¡Þ)ÉÏÊÇÔöº¯ÊýµÄÒ»¸ö³ä·ÖÌõ¼þÊÇ£­£¼0£»

¢ÚÒÑÖª¼×£ºx£«y¡Ù3£¬ÒÒ£ºx¡Ù1»òy¡Ù2£¬Ôò¼×ÊÇÒҵijä·Ö²»±ØÒªÌõ¼þ£»

¢ÛÊýÁÐ{an}(n¡ÊN*)ÊǵȲîÊýÁеijäÒªÌõ¼þÊÇPnÊǹ²Ïߵģ®

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2014½ì¸£½¨Ê¡¸ß¶þÏÂѧÆÚÆÚÖп¼ÊÔÀí¿ÆÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

¸ø³öÏÂÁÐËĸö½áÂÛ£º¢Ù £»

¢ÚÒÑÖª¼¯ºÏ£¬Èô£¬Ôò1

¢ÛÒÑ֪Ϊ¶¨ÒåÔÚRÉϵĿɵ¼º¯Êý,ÇÒ¶ÔÓÚºã³ÉÁ¢,ÔòÓÐ, £»

¢Ü Èô¶¨ÒåÔÚÕýÕûÊýÓÐÐò¶Ô¼¯ºÏÉϵĶþÔªº¯ÊýÂú×㣺£¨1£©£¬£¨2£© £¨3£©£¬Ôò=

ÔòÆäÖÐÕýÈ·½áÂÛµÄÓР        £¨ÌîдÄãÈÏΪÕýÈ·µÄÐòºÅ£©

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁнáÂÛÖÐÊÇÕæÃüÌâµÄÊÇ__________(ÌîÐòºÅ)£®

¢Ùf(x)£½ax2£«bx£«cÔÚ[0£¬£«¡Þ)ÉÏÊÇÔöº¯ÊýµÄÒ»¸ö³ä·ÖÌõ¼þÊÇ£­£¼0£»

¢ÚÒÑÖª¼×£ºx£«y¡Ù3£¬ÒÒ£ºx¡Ù1»òy¡Ù2£¬Ôò¼×ÊÇÒҵijä·Ö²»±ØÒªÌõ¼þ£»

¢ÛÊýÁÐ{an}(n¡ÊN*)ÊǵȲîÊýÁеijäÒªÌõ¼þÊÇPnÊǹ²Ïߵģ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸