精英家教网 > 高中数学 > 题目详情
13.已知$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是同一平面内的三个向量,$\overrightarrow a$=(1,2).
(1)若|$\overrightarrow c$|=2$\sqrt{5}$且$\overrightarrow c$∥$\overrightarrow a$,求$\overrightarrow c$的坐标;
(2)若|$\overrightarrow b$|=$\sqrt{10}$,且$\overrightarrow a$+2$\overrightarrow b$与2$\overrightarrow a$-$\overrightarrow b$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ.

分析 (1)根据向量关系的坐标关系结合向量模长的公式进行求解即可.
(2)根据向量垂直建立方程关系,结合向量数量积的公式进行求解即可.

解答 解:(1)∵$\overrightarrow c$∥$\overrightarrow a$,$\overrightarrow a$=(1,2).
∴设$\overrightarrow c$=m$\overrightarrow a$=(m,2m).
若|$\overrightarrow c$|=2$\sqrt{5}$,
则$\sqrt{{m}^{2}+4{m}^{2}}$=$\sqrt{5}$|m|=2$\sqrt{5}$,
则|m|=2,则m=±2,则$\overrightarrow c$=(2,4)或(-2,-4);
(2)若|$\overrightarrow b$|=$\sqrt{10}$,且$\overrightarrow a$+2$\overrightarrow b$与2$\overrightarrow a$-$\overrightarrow b$垂直,
则($\overrightarrow a$+2$\overrightarrow b$)•(2$\overrightarrow a$-$\overrightarrow b$)=0,
即2$\overrightarrow a$2-2$\overrightarrow b$2+3$\overrightarrow a$•$\overrightarrow b$=0,
即2×5-2×10+3×$\sqrt{5}×\sqrt{10}$cosθ=0,
即cosθ=$\frac{\sqrt{2}}{3}$
则$\overrightarrow a$与$\overrightarrow b$的夹角θ=arccos$\frac{\sqrt{2}}{3}$.

点评 本题主要考查向量数量积的应用,结合向量平行和向量垂直的关系建立方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.给定椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),称圆心在原点O,半径为$\sqrt{{a}^{2}+{b}^{2}}$的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F($\sqrt{2}$,0),其短轴上的一个端点到F的距离为$\sqrt{3}$.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.
(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2
(ⅱ)求证:线段MN的长为定值并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{e_1}$、$\overrightarrow{e_2}$是表示平面内所有向量的一组基底,那么下面四组向量中,不能作为一组基底的是(  )
A.$\overrightarrow{e_1},\overrightarrow{e_1}-\overrightarrow{e_2}$B.$\overrightarrow{e_1}+\overrightarrow{e_2},\overrightarrow{e_1}-\overrightarrow{e_2}$
C.$\overrightarrow{e_1}+2\overrightarrow{e_2},-2\overrightarrow{e_1}+\overrightarrow{e_2}$D.$\overrightarrow{e_1}-\overrightarrow{3{e_2}},-2\overrightarrow{e_1}+6\overrightarrow{e_2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)方程log0.5(x+$\frac{1}{x-1}$+1)-a=0在x∈(1,+∞)上有零点,求a的取值范围;
(2)方程log0.5(x+$\frac{1}{x-1}$+1)-a=0在x∈[2,+∞)上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2离心率为$\frac{{\sqrt{3}}}{2}$,圆O:x2+y2=1的切线l与椭圆C相交于A,B两点,满足|AF1|+|AF2|=4.
(1)求椭圆C的标准方程;
(2)当弦长|AB|=$\sqrt{3}$时,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(3,7),则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-18B.-20C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b为正实数,且a+b=1,则$\frac{1}{a}$+$\frac{2}{b}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\frac{lnx}{x}$-kx(k∈R),在区间[$\frac{1}{e}$,e2]上的有两个零点,则k的取值范围[$\frac{2}{{e}^{4}}$,$\frac{1}{2e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读下列语句:

该语句执行后输出的结果A是(  )
A.5B.6C.15D.120

查看答案和解析>>

同步练习册答案