3£®¸ø¶¨ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬³ÆÔ²ÐÄÔÚÔ­µãO£¬°ë¾¶Îª$\sqrt{{a}^{2}+{b}^{2}}$µÄÔ²ÊÇÍÖÔ²CµÄ¡°×¼Ô²¡±£®ÈôÍÖÔ²CµÄÒ»¸ö½¹µãΪF£¨$\sqrt{2}$£¬0£©£¬Æä¶ÌÖáÉϵÄÒ»¸ö¶Ëµãµ½FµÄ¾àÀëΪ$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³ÌºÍÆä¡°×¼Ô²¡±·½³Ì£»
£¨2£©µãPÊÇÍÖÔ²CµÄ¡°×¼Ô²¡±Éϵ͝µã£¬¹ýµãP×÷ÍÖÔ²µÄÇÐÏßl1£¬l2½»¡°×¼Ô²¡±ÓÚµãM£¬N£®
£¨¢¡£©µ±µãPΪ¡°×¼Ô²¡±ÓëyÖáÕý°ëÖáµÄ½»µãʱ£¬ÇóÖ±Ïßl1£¬l2µÄ·½³Ì²¢Ö¤Ã÷l1¡Íl2£»
£¨¢¢£©ÇóÖ¤£ºÏß¶ÎMNµÄ³¤Îª¶¨Öµ²¢Çó¸Ã¶¨Öµ£®

·ÖÎö £¨1£©¸ù¾ÝÍÖÔ²µÄ¶¨ÒåÓ뼸ºÎÐÔÖÊ£¬Çó³öa¡¢bµÄÖµ£¬¼´¿Éд³öÍÖÔ²µÄ·½³ÌºÍ×¼Ô²·½³Ì£»
£¨2£©£¨¢¡£©Ð´³ö¹ýµãPÇÒÓëÍÖÔ²ÏàÇеÄÖ±Ïߣ¬ÓëÍÖÔ²·½³Ì×é³É·½³Ì×飬·½³Ì×éÓÐÇÒÖ»ÓÐÒ»×é½â£¬
ÓÉ´ËÇó³öÇÐÏߵķ½³Ì£¬²¢Ö¤Ã÷Á½Ö±Ïß´¹Ö±£»
£¨¢¢£©¢ÙÌÖÂÛÖ±Ïßl1£¬l2ÖÐÓÐÒ»ÌõбÂʲ»´æÔÚʱ£¬Âú×ãl1£¬l2´¹Ö±£»
¢Úl1£¬l2бÂÊ´æÔÚʱ£¬µÃ³öl1£¬l2´¹Ö±£»ÇÒl1£¬l2¾­¹ýµãP£¬·Ö±ð½»Æä×¼Ô²ÓÚµãM¡¢N£¬´Ó¶øµÃ³öÏß¶ÎMNµÄ³¤Îª×¼Ô²µÄÖ±¾¶£¬ÊǶ¨Öµ£®

½â´ð ½â£º£¨1£©¡ßc=$\sqrt{2}$£¬a=$\sqrt{3}$£¬¡àb=$\sqrt{{a}^{2}{-c}^{2}}$=1£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{3}$+y2=1£¬×¼Ô²·½³ÌΪx2+y2=4£»
£¨2£©£¨¢¡£©ÒòΪ׼Բx2+y2=4ÓëyÖáÕý°ëÖáµÄ½»µãΪP£¨0£¬2£©£¬
Éè¹ýµãP£¨0£¬2£©ÇÒÓëÍÖÔ²ÏàÇеÄÖ±ÏßΪy=kx+2£¬
ËùÒÔÓÉ$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{3}{+y}^{2}=1}\end{array}\right.$µÃ£¨1+3k2£©x2+12kx+9=0£®
ÒòΪֱÏßy=kx+2ÓëÍÖÔ²ÏàÇУ¬ËùÒÔ¡÷=144k2-4¡Á9£¨1+3k2£©=0£¬½âµÃk=¡À1£¬
ËùÒÔÖ±Ïßl1¡¢l2µÄ·½³ÌΪy=x+2ºÍy=-x+2£»
ÇÒk1•k2=-1£¬¡àl1¡Íl2£®
£¨¢¢£©¢Ùµ±Ö±Ïßl1£¬l2ÖÐÓÐÒ»ÌõбÂʲ»´æÔÚʱ£¬²»·ÁÉèÖ±Ïßl1бÂʲ»´æÔÚ£¬
Ôòl1£ºx=¡À$\sqrt{3}$£¬µ±l1£ºx=$\sqrt{3}$ʱ£¬l1Óë×¼Ô²½»Óڵ㣨$\sqrt{3}$£¬1£©ºÍ£¨$\sqrt{3}$£¬-1£©£¬
´Ëʱl2Ϊy=1£¨»òy=-1£©£¬ÏÔȻֱÏßl1£¬l2´¹Ö±£»
ͬÀí¿ÉÖ¤µ±l1£ºx=-$\sqrt{3}$ʱ£¬Ö±Ïßl1£¬l2´¹Ö±£»
¢Úµ±l1£¬l2бÂÊ´æÔÚʱ£¬ÉèµãP£¨x0£¬y0£©£¬ÆäÖÐ${{x}_{0}}^{2}$+${{y}_{0}}^{2}$=4£»
Éè¾­¹ýµãP£¨x0£¬y0£©ÓëÍÖÔ²ÏàÇеÄÖ±ÏßΪy=t£¨x-x0£©+y0£¬
ËùÒÔÓÉ$\left\{\begin{array}{l}{y=t£¨x{-x}_{0}£©{+y}_{0}}\\{\frac{{x}^{2}}{3}{+y}^{2}=1}\end{array}\right.$£¬
µÃ£¨1+3t2£©x2+6t£¨y0-tx0£©x+3${{£¨y}_{0}-{tx}_{0}£©}^{2}$-3=0£»
ÓÉ¡÷=0»¯¼òÕûÀíµÃ£¨3-${{x}_{0}}^{2}$£©t2+2x0y0t+1-${{y}_{0}}^{2}$=0£¬
ÒòΪ${{x}_{0}}^{2}$+${{y}_{0}}^{2}$=4£¬ËùÒÔÓУ¨3-${{x}_{0}}^{2}$£©t2+2x0y0t+£¨${{x}_{0}}^{2}$-3£©=0£»
Éèl1£¬l2µÄбÂÊ·Ö±ðΪt1ºÍt2£¬ÒòΪl1£¬l2ÓëÍÖÔ²ÏàÇУ¬
ËùÒÔt1£¬t2Âú×ãÉÏÊö·½³Ì£¨3-${{x}_{0}}^{2}$£©t2+2x0y0t+£¨${{x}_{0}}^{2}$-3£©=0£¬
ËùÒÔt1•t2=-1£¬¼´l1£¬l2´¹Ö±£»
×ۺϢ٢ÚÖª£ºÒòΪl1£¬l2¾­¹ýµãP£¨x0£¬y0£©£¬
ÓÖ·Ö±ð½»Æä×¼Ô²ÓÚµãM¡¢N£¬ÇÒl1£¬l2 ´¹Ö±£»
ËùÒÔÏß¶ÎMNΪ׼Բx2+y2=4µÄÖ±¾¶£¬|MN|=4£¬
ËùÒÔÏß¶ÎMNµÄ³¤Îª¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨ÒåÓ뼸ºÎÐÔÖʵÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËж¨ÒåµÄÓ¦ÓÃÎÊÌ⣬¿¼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßµÄÓ¦ÓÃÎÊÌâÒÔ¼°·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÓ³Éäf£ºN¡úR£¬x¡ú$\frac{12}{x+1}$£¬Ôòf£¨x£©=4µÄÔ­ÏóÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Çëд³ö3¸ö²»Í¬µÄº¯Êýy=f£¨x£©½âÎöʽ£¬Âú×ãf£¨1£©=1£¬f£¨2£©=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ä³ÖÐѧ¹²ÓÐѧÉú2000ÈË£¬ÆäÖиßÒ»Ä꼶ѧÉú¹²ÓÐ650ÈË£¬ÏÖ´ÓȫУѧÉúÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½¸ß¶þÄ꼶ѧÉúµÄ¸ÅÂÊÊÇ0.40£¬¹À¼Æ¸ÃУ¸ßÈýÄ꼶ѧÉú¹²ÓÐ550ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª¦ÁÊǵÚÒ»ÏóÏ޽ǣ¬ÄÇô$\frac{¦Á}{2}$ÊǵÚÒ»»òÈýÏóÏ޽ǣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª¹«²î²»Îª0µÄµÈ²îÊýÁÐ{an}µÄÊ×ÏîΪ2£¬ÇÒa1£¬a2£¬a4³ÉµÈ±ÈÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Áî${b_n}=\frac{1}{{{{£¨a_n^{\;}+1£©}^2}-1}}£¨n¡Ê{N^*}£©$£¬ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬Ö¤Ã÷£º${S_n}£¼\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÓÉÕýÏҵĺͽǹ«Ê½sin£¨¦Á+¦Â£©=sin¦Ácos¦Â+cos¦Ásin¦ÂÓëÕýÏÒ¶þ±¶¹«Ê½sin2¦Á=2sin¦Ácos¦Á£®Çó¢Ùsin3¦Á=3sin¦Á-4sin3¦Á£¨ÓÃsin¦Á±íʾ£©£»¢ÚÀûÓöþ±¶½ÇºÍÈý±¶½Ç¹«Ê½¼°$sin¦Á=cos£¨\frac{¦Ð}{2}-¦Á£©$£¬Çósin18¡ã=$\frac{\sqrt{5}-1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªA£¨2£¬0£©£¬µãPÔÚÒÔÔ­µãOΪԲÐÄ¡¢°ë¾¶Îª1µÄÔ²ÖÜÉÏÔ˶¯£®ÒÔPAΪ±ßÏòÍâ×÷ÕýÈý½ÇÐÎAPQ£¬¶à±ßÐÎOPQAµÄÃæ»ýΪS£®
£¨1£©Éè¡ÏAOP=¦È£®ÇóS=f£¨¦È£©µÄ±í´ïʽ£»
£¨2£©ÉèµãPµÄºá×ø±êΪx£¬ÇóS=g£¨x£©µÄ±í´ïʽ£»
£¨3£©ÇëÑ¡Ôñ£¨1£©£¨2£©ÖеÄÒ»ÖÖ·½·¨£¬ÇóSµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª$\overrightarrow a$¡¢$\overrightarrow b$¡¢$\overrightarrow c$ÊÇÍ¬Ò»Æ½ÃæÄÚµÄÈý¸öÏòÁ¿£¬$\overrightarrow a$=£¨1£¬2£©£®
£¨1£©Èô|$\overrightarrow c$|=2$\sqrt{5}$ÇÒ$\overrightarrow c$¡Î$\overrightarrow a$£¬Çó$\overrightarrow c$µÄ×ø±ê£»
£¨2£©Èô|$\overrightarrow b$|=$\sqrt{10}$£¬ÇÒ$\overrightarrow a$+2$\overrightarrow b$Óë2$\overrightarrow a$-$\overrightarrow b$´¹Ö±£¬Çó$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½Ç¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸