分析 (1)设等差数列{an}的公差为d≠0,又a1,a2,a4成等比数列,可得${a}_{2}^{2}$=a1a4,再利用等差数列的通项公式即可得出.
(2)由bn=$\frac{1}{({a}_{n}+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”方法即可得出.
解答 (1)解:设等差数列{an}的公差为d≠0,∵a1,a2,a4成等比数列,
∴${a}_{2}^{2}$=a1a4,∴(2+d)2=2(2+3d),化为:d2-2d=0,d≠0,解得d=2.
∴an=2+2(n-1)=2n.
(2)证明:bn=$\frac{1}{({a}_{n}+1)^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{bn}的前n项和为Sn=$\frac{1}{4}$$[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$$<\frac{1}{4}$.
点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}-1}}{2}-\frac{{\sqrt{2}+1}}{2}i$ | B. | $\frac{{\sqrt{2}+1}}{2}-\frac{{\sqrt{2}-1}}{2}i$ | C. | $\frac{1}{2}+\frac{3}{2}i$ | D. | $\frac{1}{2}-\frac{3}{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -18 | B. | -20 | C. | 18 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com