精英家教网 > 高中数学 > 题目详情
8.已知公差不为0的等差数列{an}的首项为2,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${b_n}=\frac{1}{{{{(a_n^{\;}+1)}^2}-1}}(n∈{N^*})$,设数列{bn}的前n项和为Sn,证明:${S_n}<\frac{1}{4}$.

分析 (1)设等差数列{an}的公差为d≠0,又a1,a2,a4成等比数列,可得${a}_{2}^{2}$=a1a4,再利用等差数列的通项公式即可得出.
(2)由bn=$\frac{1}{({a}_{n}+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”方法即可得出.

解答 (1)解:设等差数列{an}的公差为d≠0,∵a1,a2,a4成等比数列,
∴${a}_{2}^{2}$=a1a4,∴(2+d)2=2(2+3d),化为:d2-2d=0,d≠0,解得d=2.
∴an=2+2(n-1)=2n.
(2)证明:bn=$\frac{1}{({a}_{n}+1)^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{bn}的前n项和为Sn=$\frac{1}{4}$$[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$$<\frac{1}{4}$.

点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)计算:sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{π}{4}$);
(2)已知tanα=3,求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的离心率为$\sqrt{3}$,则它的渐近线方程是y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知各项均不为零的数列{an}满足:${a_{n+2}}{a_n}={a_{n+1}}^2({n∈{N^*}})$,且a1=2,8a4=a7
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${b_n}=\frac{a_n}{{n({n+1}){2^n}}}({n∈{N^*}})$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.给定椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),称圆心在原点O,半径为$\sqrt{{a}^{2}+{b}^{2}}$的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F($\sqrt{2}$,0),其短轴上的一个端点到F的距离为$\sqrt{3}$.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.
(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程并证明l1⊥l2
(ⅱ)求证:线段MN的长为定值并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.点P是函数$f(x)=\frac{1}{3}{x^3}-x,x∈[{-1,\sqrt{2}}]$图象上任意一点,且在点P处切线的倾斜角为α,则α的取值范围是$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z满足z(1-i)=|1-i|+i,则z的共轭复数为(  )
A.$\frac{{\sqrt{2}-1}}{2}-\frac{{\sqrt{2}+1}}{2}i$B.$\frac{{\sqrt{2}+1}}{2}-\frac{{\sqrt{2}-1}}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图是某游乐场的摩天轮的示意图,其最高点离地面45米,直径为40米,并以每12分钟一周的速度匀速旋转,求证:摩天轮上某个点P离地面的高度h(米)与时间t(分)的函数关系式是h=-20cos$\frac{π}{6}$t+25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(3,7),则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-18B.-20C.18D.20

查看答案和解析>>

同步练习册答案