精英家教网 > 高中数学 > 题目详情
13.点P是函数$f(x)=\frac{1}{3}{x^3}-x,x∈[{-1,\sqrt{2}}]$图象上任意一点,且在点P处切线的倾斜角为α,则α的取值范围是$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$.

分析 f′(x)=x2-1,设P(x0,y0),x0∈$[-1,\sqrt{2}]$.可得tanα=${x}_{0}^{2}$-1的范围,又α∈[0,π),即可得出α的范围.

解答 解:f′(x)=x2-1,
设P(x0,y0),x0∈$[-1,\sqrt{2}]$.
∴tanα=${x}_{0}^{2}$-1∈[-1,1],又α∈[0,π),
∴α∈$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$,
故答案为:$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$.

点评 本题考查了导数的几何意义、切线的斜率、三角函数的单调性、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.等比数列{an}的各项均为正数,且a1a5=$\frac{1}{4}$,则log2a1+log2a2+log2a3+log2a4+log2a5=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示:
(1)求函数f(x)的解析式; 
(2)求出函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$中,斜率为k(k>0)的直线交椭圆于左顶点A和另一点B,点B在x轴上的射影恰好为右焦点F,若椭圆离心率$e=\frac{1}{3}$,则k的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知公差不为0的等差数列{an}的首项为2,且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${b_n}=\frac{1}{{{{(a_n^{\;}+1)}^2}-1}}(n∈{N^*})$,设数列{bn}的前n项和为Sn,证明:${S_n}<\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的首项a1=1,且公差d>0,它的第2项、第5项、第14项分别是等比数列{bn}的第2、3、4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意正整数n均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{c_2}{b_2}$+…+$\frac{c_n}{b_n}$=an+1成立,求a1c1+a2c2+…+ancn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某厂共有1000名员工,准备选择50人参加技术评估,现将这1000名员工编号为1到1000,准备运用系统抽样的方法抽取,已知在第一部分随机抽取到的号码是15,那么在最后一部分抽到员工的编号是(  )
A.965B.975C.985D.995

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,若2B=A+C,b2=ac,则△ABC的形状是(  )
A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在两个变量y与x的回归模型中,分别选择了四个不同的模型,它的相关指数R2如下,其中拟合效果最好的模型是(  )
A.模型1的相关指数R2为0.87B.模型2的相关指数R2为0.97
C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25

查看答案和解析>>

同步练习册答案