精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的部分图象如图所示:
(1)求函数f(x)的解析式; 
(2)求出函数f(x)的单调递增区间.

分析 (1)根据最值得A,根据函数周期计算ω,代入特殊点坐标即可求出φ,从而得出f(x)的解析式;
(2)根据正弦函数的单调区间列出不等式解出即可.

解答 解:(1)由函数图象可知f(x)的最大值为$\sqrt{2}$,周期T=16,
∴A=$\sqrt{2}$,ω=$\frac{2π}{T}$=$\frac{π}{8}$,
又f(x)过点(2,$\sqrt{2}$),则 $\sqrt{2}=\sqrt{2}sin(\frac{π}{8}×2+φ)$(k∈Z),
∴$\frac{π}{4}+φ=\frac{π}{2}+2kπ$,又|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{4}$,
∴f(x)=$\sqrt{2}$sin($\frac{π}{8}$x+$\frac{π}{4}$).
(2)令$2kπ-\frac{π}{2}≤\frac{π}{8}x+\frac{π}{4}≤2kπ+\frac{π}{2}$,解得:16k-6≤x≤16k+2(k∈Z),
∴f(x)的递增区间为[16k-6,16k+2](k∈Z).

点评 本题考查了正弦函数的图象与性质,函数解析式的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知中心在原点,焦点F1、F2在x轴上的双曲线经过点P(4,2),△PF1F2的内切圆与x轴相切于点Q(2$\sqrt{2}$,0),则双曲线的实轴长为(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.长方体的一个顶点在三条棱长分别为3,4,5,若它的八个顶点都在同一个球面上,则这个球的半径是$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知ω>0,函数f(x)=sin(ωx)+1在区间[-$\frac{π}{3}$,0]上恰有三个零点,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1的离心率为$\sqrt{3}$,则它的渐近线方程是y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列an=3n,记数列{an}的前n项和为Tn,若对任意的 n∈N*,(Tn+$\frac{3}{2}$)k≥3n-6恒成立,则实数 k 的取值范围$k≥\frac{2}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知各项均不为零的数列{an}满足:${a_{n+2}}{a_n}={a_{n+1}}^2({n∈{N^*}})$,且a1=2,8a4=a7
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${b_n}=\frac{a_n}{{n({n+1}){2^n}}}({n∈{N^*}})$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.点P是函数$f(x)=\frac{1}{3}{x^3}-x,x∈[{-1,\sqrt{2}}]$图象上任意一点,且在点P处切线的倾斜角为α,则α的取值范围是$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,A(1,2)、B($\frac{1}{4}$,-1)是抛物线y2=ax(a>0)上的两个点,过点A、B引抛物线的两条弦AE,BF.
(1)求实数a的值;
(2)若直线AE与BF的斜率是互为相反数,且A,B两点在直线EF的两侧.
(i)直线EF的斜率是否为定值?若是求出该定值,若不是,说明理由;
(ii)求四边形AEBF面积的取值范围.

查看答案和解析>>

同步练习册答案