| A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
分析 根据三角形内切圆的性质结合双曲线的定义,求出2a,即可得到结论.
解答
解:中心在原点,焦点F1、F2在x轴上的双曲线为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
作出对应的图象如图:设三个切点分别为A,B,C,
∵△PF1F2的内切圆与x轴相切于点Q(2$\sqrt{2}$,0),
∴|F1Q|=|F1C|=c+2$\sqrt{2}$,∴|F2Q|=|F2B|=c-2$\sqrt{2}$,
∴由双曲线的定义得||F1P|-|F2P|=|F1C|-|F2B|=c+2$\sqrt{2}$-(c-2$\sqrt{2}$)=4$\sqrt{2}$=2a,
故选:D.
点评 本题主要考查双曲线的实轴长的计算,根据三角形内切圆的性质求出2a是解决本题的关键.注意利用数形结合进行求解.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com