精英家教网 > 高中数学 > 题目详情
16.已知$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,cosα=-$\frac{3}{5}$,sinβ=$\frac{5}{13}$,求sin(α+β)的值.

分析 由已知利用同角三角函数基本关系式可求$sinα=\frac{4}{5}$,$cosβ=\frac{12}{13}$,进而利用两角和的正弦函数公式即可计算求值得解.

解答 解:∵$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,cosα=-$\frac{3}{5}$,sinβ=$\frac{5}{13}$,
∴$sinα=\frac{4}{5}$,$cosβ=\frac{12}{13}$┅┅┅(6分)
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{4}{5}×\frac{12}{13}$+(-$\frac{3}{5}$)×$\frac{5}{13}$=$\frac{33}{65}$.┅┅┅(12分)

点评 本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.等差数列{an}的前n项和为Sn,且S3=6,a1=4,向量$\overrightarrow m$=(a5,3),$\overrightarrow n$=(1,a3),则向量$\overrightarrow m$在$\overrightarrow n$方向上的投影等于(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x+2)=2x,则f(2)=(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=2sin(ωx+φ)的图象(部分)如图所示,则ω和φ的可能取值是(  )
A.ω=1,φ=$\frac{π}{3}$B.ω=1,φ=-$\frac{π}{3}$C.ω=$\frac{1}{2}$,φ=$\frac{π}{6}$D.ω=$\frac{1}{2}$,φ=-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=5cos(4x+$\frac{π}{4}$)的最小正周期为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)设a≥b>0,求证:3a3+2b3≥3a2b+2ab2
(2)已知a>0,b>0且a+b>2,求证:$\frac{1+b}{a}$,$\frac{1+a}{b}$中至少有一个小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知中心在原点,焦点F1、F2在x轴上的双曲线经过点P(4,2),△PF1F2的内切圆与x轴相切于点Q(2$\sqrt{2}$,0),则双曲线的实轴长为(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将一个棱长为6的正方体加工成一个球,则这个球体积的最大值为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知ω>0,函数f(x)=sin(ωx)+1在区间[-$\frac{π}{3}$,0]上恰有三个零点,求ω的取值范围.

查看答案和解析>>

同步练习册答案