分析 由已知利用同角三角函数基本关系式可求$sinα=\frac{4}{5}$,$cosβ=\frac{12}{13}$,进而利用两角和的正弦函数公式即可计算求值得解.
解答 解:∵$\frac{π}{2}$<α<π,0<β<$\frac{π}{2}$,cosα=-$\frac{3}{5}$,sinβ=$\frac{5}{13}$,
∴$sinα=\frac{4}{5}$,$cosβ=\frac{12}{13}$┅┅┅(6分)
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{4}{5}×\frac{12}{13}$+(-$\frac{3}{5}$)×$\frac{5}{13}$=$\frac{33}{65}$.┅┅┅(12分)
点评 本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ω=1,φ=$\frac{π}{3}$ | B. | ω=1,φ=-$\frac{π}{3}$ | C. | ω=$\frac{1}{2}$,φ=$\frac{π}{6}$ | D. | ω=$\frac{1}{2}$,φ=-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com