精英家教网 > 高中数学 > 题目详情
用数学归纳法证明对任何正整数n有
1
3
+
1
15
+
1
35
+
1
63
+…+
1
4n2-1
=
n
2n+1
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:利用数学归纳法证明:①当n=1时,易证等式成立;②假设当n=k(k≥1,k∈N*)时等式成立,即
1
3
+
1
15
+
1
35
+
1
63
+…+
1
4k2-1
=
k
2k+1
,用上该归纳假设,去证明当n=k+1时,等式也成立即可.
解答: 证明:①当n=1时,左边=
1
3
,右边=
1
2+1
=
1
3

∴等式成立;
②假设当n=k(k≥1,k∈N*)时等式成立,即
1
3
+
1
15
+
1
35
+
1
63
+…+
1
4k2-1
=
k
2k+1

则当n=k+1时,
1
3
+
1
15
+
1
35
+
1
63
+…+
1
4k2-1
+
1
4(k+1)2-1

=
k
2k+1
+
1
4(k+1)2-1

=
k
2k+1
+
1
(2k+3)(2k+1)

=
2k2+3k+1
(2k+3)(2k+1)

=
(k+1)(2k+1)
(2k+3)(2k+1)

=
k+1
2(k+1)+1

∴当n=k+1时等式也成立.
由①②知等式对任何正整数n都成立.
点评:本题考查数学归纳法,着重考查推理、变形与论证能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b,则a+b>0是a>0且b>0的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD为正方形,EA⊥平面ABCD,EF∥AB,AB=4,AE=2,EF=1.
(Ⅰ)若点M在线段AC上,且满足CM=
1
4
CA
,求证:EM∥平面FBC;
(Ⅱ)求证:AF⊥平面EBC;
(Ⅲ)求二面角A-FB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=cosθ
y=sinθ
(θ为参数),曲线C2
x=
2
2
t
y=
2
2
t-
2
(t为参数)
(1)求C1,C2的普通方程,并指出它们是什么曲线.
(2)曲线C1,C2是否有公共点,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
cos(
π
2
-x)-sin(
2
+x)
sin(2π+x)+cos(π-x)
=3.
(1)求tanx的值;
(2)若x是第三象限角,求
1+sinx
1-sinx
-
1-sinx
1+sinx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知向量
a
b
,计算6
a
-[4
a
-
b
-5(2
a
-3
b
)]+(
a
+7
b
);
(2)已知向量|
a
|=6,|
b
|=4,向量
a
b
的夹角是60°,求(
a
+2
b
)•(
a
-3
b
).

查看答案和解析>>

科目:高中数学 来源: 题型:

一组数据4、7、10、6、9,n是这组数据的中位数,设f(x)=(
1
x
-x2n
(1)求f(x)的展开式中x-1的项的系数;
(2)求f(x)的展开式中系数最大的项和系数最小的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x,其反函数为y=g(x).
(1)求g(4)+g(8)-g(
32
9
)
的值;
(2)解不等式g(
x
1-x
)<f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式x2-2ax-8a2<0.

查看答案和解析>>

同步练习册答案