精英家教网 > 高中数学 > 题目详情
已知实数a,b,则a+b>0是a>0且b>0的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式的性质,以及充分条件和必要条件的定义进行判断.
解答: 解:当a=2,b=-1时,满足a+b>0,但a>0且b>0不成立.
若a>0且b>0,则根据不等式的性质可知a+b>0成立,
∴a+b>0是a>0且b>0的必要不充分条件.
故选:B.
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2xx≤1
log
1
2
x   x>1
,则f(f(4))等于(  )
A、1
B、-1
C、
1
4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的前n项和为Sn,若a1+a2+a3=3,a4+a5+a6=6,则S12=(  )
A、15B、30C、45D、60

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程
3
sin2x+cos2x=k+1在[0,
π
2
]内有两相异实根,则k满足(  )
A、k∈(-3,1)
B、k∈[0,1)
C、k∈(-2,1)
D、k∈(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列条件中,是“△ABC为等腰三角形”的充分不必要条件的个数为(  )
①asinA=bsinB    ②acosA=bcosB    ③acosB=bcosA    ④asinB=bsinA.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β均为锐角,且3sinα=2sinβ,3cosα+2cosβ=3,则α+2β的值为(  )
A、
π
3
B、
π
2
C、
3
D、π

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位有老年人27人,中年人54人,青年人81人,为了调查他们身体状况的某项指标,需从他们中抽取一个容量为36的样本,适合抽取样本的方法是(  )
A、抽签法B、系统抽样
C、随机数表法D、分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,离心率e=
1
2
,一个顶点的坐标为(0,
3
)

(1)求椭圆C的方程;
(2)椭圆C的左焦点为F,右顶点为A,直线l:y=kx+m与椭圆C相交于M,N两点且
AM
AN
=0
,试问:是否存在实数λ,使得S△FMN=λS△AMN成立,若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明对任何正整数n有
1
3
+
1
15
+
1
35
+
1
63
+…+
1
4n2-1
=
n
2n+1

查看答案和解析>>

同步练习册答案