精英家教网 > 高中数学 > 题目详情
20.已知sinαcosα=$\frac{1}{3}$,则${cos^2}({α+\frac{π}{4}})$=$\frac{1}{6}$.

分析 由条件利用二倍角的正弦公式求得sin2α的值,再利用二倍角的余弦公式、诱导公式求得${cos^2}({α+\frac{π}{4}})$的值.

解答 解:由于sinαcosα=$\frac{1}{2}$sin2α=$\frac{1}{3}$,∴sin2α=$\frac{2}{3}$,
则${cos^2}({α+\frac{π}{4}})$=$\frac{1+cos(2α+\frac{π}{2})}{2}$=$\frac{1-sin2α}{2}$=$\frac{1}{6}$,
故答案为:$\frac{1}{6}$.

点评 本题主要考查二倍角公式、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别是a,b,c,且满足:a2=(b-c)2+(2-$\sqrt{3}$)bc,又sinAsinB=$\frac{1+cosC}{2}$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x1,x2是函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+2bx的两个极值点,且x1∈(0,1),x2∈(1,2),则$\frac{b-2}{a+2}$的取值范围是(  )
A.(-2,1)B.(-∞,$\frac{1}{4}$)∪(1,+∞)C.($\frac{1}{4}$,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$-1.
(1)求函数f(x)在点(1,-$\frac{1}{6}$ )处的切线方程;
(2)若直线y=m与f(x)的图象有三个不同的交点,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3cos2$\frac{ωx}{2}+\frac{{\sqrt{3}}}{2}sinωx-\frac{3}{2}$(ω>0)在一个周期内的图象如图所示,点A为图象的最高点,B,C为图象与x轴的交点,且三角形ABC的面积为$\frac{\sqrt{3}}{4}$π.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=$\frac{4\sqrt{3}}{5}$,x0∈($\frac{π}{12}$,$\frac{π}{3}$),求f(x0+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC中,角A、B、C的对边分别是a、b、c,若a-b=ccosB-ccosA,则△ABC的形状是等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.程序框图如图所示,该程序运行后输出的S的值是(  )
A.-3B.-$\frac{1}{2}$C.2D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{x^2}{-m}+\frac{y^2}{-n}=1({m<n<0})$的焦点坐标为(-$\sqrt{n-m}$,0)、($\sqrt{n-m}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=sin|x|的图象(  )
A.关于x轴对称B.关于原点对称C.关于y轴对称D.不具有对称性

查看答案和解析>>

同步练习册答案