| A. | 66 | B. | 64 | C. | 48 | D. | 32 |
分析 根据双曲线的性质判断△F1PF2为直角三角形,结合三角形的面积公式进行求解即可.
解答
解:由条件可知,双曲线的焦距为$2c=4\sqrt{5}$,由$|OP|=2\sqrt{5}=\frac{1}{2}|{F_1}{F_2}|$,
故△F1PF2为直角三角形,
由条件及双曲线的定义可得$\left\{\begin{array}{l}|P{F_1}|=2|P{F_2}|\\|P{F_1}|-|P{F_2}|=8\end{array}\right.$,解之得$\left\{\begin{array}{l}|P{F_1}|=16\\|P{F_2}|=8\end{array}\right.$,
故△PF1F2的面积为$\frac{1}{2}×16×8=64$.
故选:B.
点评 本题主要考查三角形面积的计算,根据双曲线的性质,判断三角形F1PF2为直角三角形是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{14}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -$\frac{14}{3}$ | C. | $\frac{14}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧q | C. | p∨¬q | D. | p∨q |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com