精英家教网 > 高中数学 > 题目详情
8.若某多面体的三视图如图所示(单位:cm),
①则此多面体的体积是$\frac{5}{6}$cm3
②此多面体外接球的表面积是3πcm2

分析 根据三视图得该几何体是由棱长为1cm的正方体、沿相邻三个侧面的对角线截去一个三棱锥得到一个多面体,画出图,
①由正方体的体积和椎体的体积公式求出此多面体的体积;
②由正方体的外接球求出此多面体外接球的半径,代入球的表面积公式求解.

解答 解根据三视图得该几何体是由棱长为1cm的正方体ABCD-EFGH、
沿相邻三个侧面的对角线截去一个三棱锥E-AFH得到一个多面体,
①此多面体的体积V=$1-\frac{1}{3}×\frac{1}{2}×1×1×1$=$\frac{5}{6}$(cm3);
②此多面体外接也是正方体的外接球,设半径为R,
则2R=$\sqrt{3}$,即R=$\frac{\sqrt{3}}{2}$(cm),
所以此多面体外接球的表面积S=4πR2=3π(cm2),
故答案为:①$\frac{5}{6}$;②3π.

点评 本题考查三视图求几何体的体积、以及外接球的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知动点P在抛物线x2=2y上,过点P作x轴的垂线,垂足为H,动点Q满足$\overrightarrow{PQ}$=$\frac{1}{2}$$\overrightarrow{PH}$.
(1)求动点Q的轨迹E的方程;
(2)点M(-4,4),过点N(4,5)且斜率为k的直线交轨迹E于A、B两点,设直线MA、MB的斜率分别为k1、k2,求|k1-k2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线C1:y2=4$\sqrt{3}$x的焦点为F,其准线与双曲线C2:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)相交于A,B两点,双曲线的一条渐近线与抛物线C1在第一象限内的交点的横坐标为$\sqrt{3}$,且△FAB为正三角形,则双曲线C2的方程为$\frac{x^2}{2}-\frac{y^2}{8}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,类似于中国结的一种刺绣图案,这些图案由小正方形构成,其数目越多,图案越美丽,若按照前4个图中小正方形的摆放规律,设第n个图案所包含的小正方形个数记为f(n).
(1)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)的关系,并通过你所得到的关系式,求出f(n)的表达式;
(2)计算:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+$\frac{1}{f(4)-1}$的值,猜想$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$的结果,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若点P是抛物线C:y2=4x上任意一点,F是抛物线C的焦点,则|PF|的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.经过抛物线C:y2=2px(p>0)外的点A(-2,-4),且倾斜角为$\frac{π}{4}$的直线l与抛物线C交于M,N两点,且|AM|、|MN|、|AN|成等比数列.
(1)求抛物线C的方程;
(2)E,F为抛物线C上的两点,且OE⊥OF(O为坐标原点),求△OEF的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点H(-6,0),点P(0,b)在y轴上,点Q(a,0)在x轴的正半轴上,且满足$\overrightarrow{HP}$⊥$\overrightarrow{PQ}$,点M在直线PQ上,且满足$\overrightarrow{PM}$-2$\overrightarrow{MQ}$=$\overrightarrow{0}$,
(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;
(Ⅱ)过点T(-1,0)作直线l与轨迹C交于A、B两点,线段AB的垂直平分线与x轴的交点为E(x0,0),设线段AB的中点为D,且2|DE|=$\sqrt{3}$|AB|,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{x^2}{16}$-$\frac{y^2}{4}$=1的左右焦点分别为F1,F2,点P在双曲线的右支上,且|OP|=2$\sqrt{5}$,且|PF1|=2|PF2|,则△PF1F2的面积为(  )
A.66B.64C.48D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.四边形ABCD中,若向量$\overrightarrow{AB}$=$\overrightarrow{DC}$,则四边形ABCD(  )
A.是平行四边形或梯形B.是梯形
C.不是平行四边形,也不是梯形D.是平行四边形

查看答案和解析>>

同步练习册答案