分析 抛物线C1:y2=4$\sqrt{3}$x的焦点为F($\sqrt{3}$,0),其准线方程为x=-$\sqrt{3}$,利用△FAB为正三角形,可得A的坐标,代入双曲线的方程,可得a,b的方程,利用双曲线的一条渐近线与抛物线C1在第一象限内的交点的横坐标为$\sqrt{3}$,可得交点坐标,可得a,b的方程,从而可得a,b的值,即可求出双曲线C2的方程.
解答 解:抛物线C1:y2=4$\sqrt{3}$x的焦点为F($\sqrt{3}$,0),其准线方程为x=-$\sqrt{3}$,
∵△FAB为正三角形,
∴|AB|=4,
将(-$\sqrt{3}$,2)代入双曲线C2:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1可得$\frac{3}{{a}^{2}}-\frac{4}{{b}^{2}}$=1,
∵双曲线的一条渐近线与抛物线C1在第一象限内的交点的横坐标为$\sqrt{3}$,
∴交点坐标为($\sqrt{3}$,2$\sqrt{3}$)
∴$\frac{b}{a}$=2,
∴a=$\sqrt{2}$,b=2$\sqrt{2}$,
∴双曲线C2的方程为$\frac{x^2}{2}-\frac{y^2}{8}=1$.
故答案为:$\frac{x^2}{2}-\frac{y^2}{8}=1$.
点评 本题考查抛物线、双曲线的方程与性质,考查学生的计算能力,正确运用抛物线、双曲线的性质是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=(cot1)tanx | B. | y=|sinx| | C. | y=-cos2x | D. | y=-tan|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{14}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com