精英家教网 > 高中数学 > 题目详情
11.下列函数中以π为周期,在(0,$\frac{π}{2}}$)上单调递减的是(  )
A.y=(cot1)tanxB.y=|sinx|C.y=-cos2xD.y=-tan|x|

分析 利用三角函数的周期性和单调性,逐一判断各个选项是否正确,从而得出结论.

解答 解:由于y=tanx的周期为π,0<cot1<1,
故y=(cot1)tanx的周期为π,且在(0,$\frac{π}{2}}$)上单调递减,故A满足条件.
由于y=|sinx|在(0,$\frac{π}{2}}$)上单调递增,故排除B.
由于在(0,$\frac{π}{2}}$)上,2x∈(0,π),函数y=-cos2x在(0,$\frac{π}{2}}$)上单调递增,故排除C.
由于函数y=-tan|x|不是周期函数,故排除D,
故选:A.

点评 本题主要考查三角函数的周期性和单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.给出下列4个命题:
①在△ABC中,“cosA+sinA=cosB+sinB”是“A=B”的充要条件;
②b2=ac是a,b,c成等比数列的充要条件;
③若loga2<logb2<0,则a>b;
④若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈($\frac{π}{4}$,$\frac{π}{2}$),则f(sinθ)>f(cosθ);  
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=tan($\frac{x}{3}$+$\frac{π}{4}$)的最小正周期为(  )
A.$\frac{π}{3}$B.C.$\frac{2π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线C1:y2=4$\sqrt{3}$x的焦点为F,其准线与双曲线C2:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)相交于A,B两点,双曲线的一条渐近线与抛物线C1在第一象限内的交点的横坐标为$\sqrt{3}$,且△FAB为正三角形,则双曲线C2的方程为$\frac{x^2}{2}-\frac{y^2}{8}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若arcsinx-arccosx=$\frac{π}{6}$,则x=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,类似于中国结的一种刺绣图案,这些图案由小正方形构成,其数目越多,图案越美丽,若按照前4个图中小正方形的摆放规律,设第n个图案所包含的小正方形个数记为f(n).
(1)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)的关系,并通过你所得到的关系式,求出f(n)的表达式;
(2)计算:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$,$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+$\frac{1}{f(4)-1}$的值,猜想$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$的结果,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若点P是抛物线C:y2=4x上任意一点,F是抛物线C的焦点,则|PF|的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点H(-6,0),点P(0,b)在y轴上,点Q(a,0)在x轴的正半轴上,且满足$\overrightarrow{HP}$⊥$\overrightarrow{PQ}$,点M在直线PQ上,且满足$\overrightarrow{PM}$-2$\overrightarrow{MQ}$=$\overrightarrow{0}$,
(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;
(Ⅱ)过点T(-1,0)作直线l与轨迹C交于A、B两点,线段AB的垂直平分线与x轴的交点为E(x0,0),设线段AB的中点为D,且2|DE|=$\sqrt{3}$|AB|,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求过点(0,4)且与椭圆9x2+4y2=36有相同焦点的椭圆方程.

查看答案和解析>>

同步练习册答案