分析 由题意可得arcsinx与arccosx=$\frac{π}{6}$均为锐角,x>0,求得cos(arcsinx-arccosx) 的值,可得x的值.
解答 解:∵arcsinx∈(-$\frac{π}{2}$,$\frac{π}{2}$),arccosx∈(0,π),arcsinx-arccosx=$\frac{π}{6}$,
∴arcsinx与arccosx 均为锐角,x>0.
又 cos(arcsinx-arccosx)=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$,
即 cos(arcsinx)•cos(arccosx)+sin(arcsinx)sin(arccosx)
=$\sqrt{{1-x}^{2}}$•x+x•$\sqrt{{1-x}^{2}}$=$\frac{\sqrt{3}}{2}$,
∴$\sqrt{{1-x}^{2}}$•x=$\frac{\sqrt{3}}{4}$,∴x2(1-x2)=$\frac{3}{16}$,∴x2=$\frac{3}{4}$,或 x2=$\frac{1}{4}$,
∴x=$\frac{\sqrt{3}}{2}$,或x=$\frac{1}{2}$.
经检验,x=$\frac{1}{2}$ 不满足条件,故舍去.
故答案为:$\frac{\sqrt{3}}{2}$.
点评 本题主要考查反正弦函数、反余弦函数的定义,两角差的余弦公公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | xD<xC<xE | B. | xC=xD>xE | C. | xD=xc<xE | D. | xC=xD=xE |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=(cot1)tanx | B. | y=|sinx| | C. | y=-cos2x | D. | y=-tan|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com