·ÖÎö £¨¢ñ£©ÉèµãMµÄ×ø±êΪ£¨x£¬y£©£¬ÇóµÃ$\overrightarrow{HP}$¡¢$\overrightarrow{PQ}$¡¢$\overrightarrow{PM}$¡¢$\overrightarrow{MQ}$µÄ×ø±ê£¬ÔËÓÃÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬ÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬ÔËÓôúÈë·¨£¬¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£»
£¨¢ò£©ÓÉÌâÒâÖªÖ±Ïßl£ºy=k£¨x+1£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢Å×ÎïÏߵķ½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬»¯¼òÕûÀí£¬½â·½³Ì¼´¿ÉµÃµ½ËùÇóÖµ£®
½â´ð ½â£º£¨¢ñ£©ÉèµãMµÄ×ø±êΪ£¨x£¬y£©£¬
Ôò$\overrightarrow{HP}=£¨6\;£¬\;\;b£©$£¬$\overrightarrow{PQ}=£¨a\;£¬\;\;-b£©$£¬$\overrightarrow{PM}=£¨x\;£¬\;\;y-b£©$£¬
$\overrightarrow{MQ}=£¨a-x\;£¬\;\;-y£©$£¬
ÓÉ$\overrightarrow{HP}$¡Í$\overrightarrow{PQ}$£¬µÃ6a-b2=0£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
ÓÉ$\overrightarrow{PM}$-2$\overrightarrow{MQ}$=0£¬µÃ$\left\{{\begin{array}{l}{x=2£¨a-x£©}\\{y-b=-2y}\end{array}}\right.⇒\left\{{\begin{array}{l}{a=\frac{3}{2}x}\\{b=3y}\end{array}}\right.$£¬
ÔòÓÉ6a-b2=0µÃy2=x£¬
¹ÊµãMµÄ¹ì¼£CµÄ·½³ÌΪy2=x£¨x£¾0£©£»¡¡¡¡¡¡¡¡¡¡
£¨¢ò£©ÓÉÌâÒâÖªÖ±Ïßl£ºy=k£¨x+1£©£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{{\begin{array}{l}{y=k£¨x+1£©\;£¬\;\;}\\{{y^2}=x\;£¬\;\;}\end{array}}\right.$µÃk2x2+£¨2k2-1£©x+k2=0£¨k¡Ù0£©£¬
ÓÉ¡÷=£¨2k2-1£©2-4k4=1-4k2£¾0£¬½âµÃ-$\frac{1}{2}$£¼k£¼$\frac{1}{2}$£¬
¡à${x_1}+{x_2}=\frac{1}{k^2}-2\;£¬\;\;{x_1}{x_2}=1$£¬
¡à$\frac{{{y_1}+{y_2}}}{2}=\frac{1}{2k}$£¬
¡à$D£¨\frac{1}{{2{k^2}}}-1\;£¬\;\;\frac{1}{2k}£©$£¬
${l_{DE}}£ºy=-\frac{1}{k}£¨x-\frac{1}{{2{k^2}}}+1£©+\frac{1}{2k}$£¬
Áîy=0£¬½âµÃ${x_0}=\frac{1}{2}-1+\frac{1}{{2{k^2}}}=\frac{1}{{2{k^2}}}-\frac{1}{2}$£¬
¡à$E£¨\frac{1}{{2{k^2}}}-\frac{1}{2}\;£¬\;\;0£©$£¬
¡à$|DE|=\sqrt{{{£¨\frac{1}{2}£©}^2}+{{£¨\frac{1}{2k}£©}^2}}=\frac{1}{2}\sqrt{\frac{{1+{k^2}}}{k^2}}$£¬
¡à$|AB|=\sqrt{1+{k^2}}|{x_1}-{x_2}|¨T\frac{{\sqrt{1+{k^2}}•\sqrt{1-4{k^2}}}}{k^2}$£¬
¡ß$2|DE|=\sqrt{3}|AB|$£¬
¹ÊÓÐ$\frac{{\sqrt{3}¡Á\sqrt{1+{k^2}}¡Á\sqrt{1-4{k^2}}}}{k^2}=2\frac{{|\frac{{1+{k^2}}}{2k}|}}{{\sqrt{1+{k^2}}}}$£¬
Ôò$\frac{{\sqrt{3}¡Á\sqrt{1-4{k^2}}}}{k^2}=|\frac{1}{k}|$£¬»¯¼òµÃ${k^2}=\frac{3}{13}$£¬´Ëʱ${x_0}=\frac{5}{3}$£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÏòÁ¿¹²Ïߺʹ¹Ö±µÄÌõ¼þ£¬¿¼²éÖ±ÏߺÍÅ×ÎïÏߵķ½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=£¨cot1£©tanx | B£® | y=|sinx| | C£® | y=-cos2x | D£® | y=-tan|x| |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 12 | B£® | 24 | C£® | 30 | D£® | 36 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | $\frac{\sqrt{14}}{2}$ | D£® | 2$\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com