20£®ÒÑÖªµãH£¨-6£¬0£©£¬µãP£¨0£¬b£©ÔÚyÖáÉÏ£¬µãQ£¨a£¬0£©ÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒÂú×ã$\overrightarrow{HP}$¡Í$\overrightarrow{PQ}$£¬µãMÔÚÖ±ÏßPQÉÏ£¬ÇÒÂú×ã$\overrightarrow{PM}$-2$\overrightarrow{MQ}$=$\overrightarrow{0}$£¬
£¨¢ñ£©µ±µãPÔÚyÖáÉÏÒÆ¶¯Ê±£¬ÇóµãMµÄ¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©¹ýµãT£¨-1£¬0£©×÷Ö±ÏßlÓë¹ì¼£C½»ÓÚA¡¢BÁ½µã£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÓëxÖáµÄ½»µãΪE£¨x0£¬0£©£¬ÉèÏß¶ÎABµÄÖеãΪD£¬ÇÒ2|DE|=$\sqrt{3}$|AB|£¬Çóx0µÄÖµ£®

·ÖÎö £¨¢ñ£©ÉèµãMµÄ×ø±êΪ£¨x£¬y£©£¬ÇóµÃ$\overrightarrow{HP}$¡¢$\overrightarrow{PQ}$¡¢$\overrightarrow{PM}$¡¢$\overrightarrow{MQ}$µÄ×ø±ê£¬ÔËÓÃÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬ÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬ÔËÓôúÈë·¨£¬¼´¿ÉµÃµ½ËùÇó¹ì¼£·½³Ì£»
£¨¢ò£©ÓÉÌâÒâÖªÖ±Ïßl£ºy=k£¨x+1£©£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÁªÁ¢Å×ÎïÏߵķ½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬»¯¼òÕûÀí£¬½â·½³Ì¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£º£¨¢ñ£©ÉèµãMµÄ×ø±êΪ£¨x£¬y£©£¬
Ôò$\overrightarrow{HP}=£¨6\;£¬\;\;b£©$£¬$\overrightarrow{PQ}=£¨a\;£¬\;\;-b£©$£¬$\overrightarrow{PM}=£¨x\;£¬\;\;y-b£©$£¬
$\overrightarrow{MQ}=£¨a-x\;£¬\;\;-y£©$£¬
ÓÉ$\overrightarrow{HP}$¡Í$\overrightarrow{PQ}$£¬µÃ6a-b2=0£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
ÓÉ$\overrightarrow{PM}$-2$\overrightarrow{MQ}$=0£¬µÃ$\left\{{\begin{array}{l}{x=2£¨a-x£©}\\{y-b=-2y}\end{array}}\right.⇒\left\{{\begin{array}{l}{a=\frac{3}{2}x}\\{b=3y}\end{array}}\right.$£¬
ÔòÓÉ6a-b2=0µÃy2=x£¬
¹ÊµãMµÄ¹ì¼£CµÄ·½³ÌΪy2=x£¨x£¾0£©£»¡¡¡¡¡¡¡¡¡¡
£¨¢ò£©ÓÉÌâÒâÖªÖ±Ïßl£ºy=k£¨x+1£©£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{{\begin{array}{l}{y=k£¨x+1£©\;£¬\;\;}\\{{y^2}=x\;£¬\;\;}\end{array}}\right.$µÃk2x2+£¨2k2-1£©x+k2=0£¨k¡Ù0£©£¬
ÓÉ¡÷=£¨2k2-1£©2-4k4=1-4k2£¾0£¬½âµÃ-$\frac{1}{2}$£¼k£¼$\frac{1}{2}$£¬
¡à${x_1}+{x_2}=\frac{1}{k^2}-2\;£¬\;\;{x_1}{x_2}=1$£¬
¡à$\frac{{{y_1}+{y_2}}}{2}=\frac{1}{2k}$£¬
¡à$D£¨\frac{1}{{2{k^2}}}-1\;£¬\;\;\frac{1}{2k}£©$£¬
${l_{DE}}£ºy=-\frac{1}{k}£¨x-\frac{1}{{2{k^2}}}+1£©+\frac{1}{2k}$£¬
Áîy=0£¬½âµÃ${x_0}=\frac{1}{2}-1+\frac{1}{{2{k^2}}}=\frac{1}{{2{k^2}}}-\frac{1}{2}$£¬
¡à$E£¨\frac{1}{{2{k^2}}}-\frac{1}{2}\;£¬\;\;0£©$£¬
¡à$|DE|=\sqrt{{{£¨\frac{1}{2}£©}^2}+{{£¨\frac{1}{2k}£©}^2}}=\frac{1}{2}\sqrt{\frac{{1+{k^2}}}{k^2}}$£¬
¡à$|AB|=\sqrt{1+{k^2}}|{x_1}-{x_2}|¨T\frac{{\sqrt{1+{k^2}}•\sqrt{1-4{k^2}}}}{k^2}$£¬
¡ß$2|DE|=\sqrt{3}|AB|$£¬
¹ÊÓÐ$\frac{{\sqrt{3}¡Á\sqrt{1+{k^2}}¡Á\sqrt{1-4{k^2}}}}{k^2}=2\frac{{|\frac{{1+{k^2}}}{2k}|}}{{\sqrt{1+{k^2}}}}$£¬
Ôò$\frac{{\sqrt{3}¡Á\sqrt{1-4{k^2}}}}{k^2}=|\frac{1}{k}|$£¬»¯¼òµÃ${k^2}=\frac{3}{13}$£¬´Ëʱ${x_0}=\frac{5}{3}$£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÏòÁ¿¹²Ïߺʹ¹Ö±µÄÌõ¼þ£¬¿¼²éÖ±ÏߺÍÅ×ÎïÏߵķ½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªµãP£¨x0£¬8£©ÊÇÅ×ÎïÏßy2=8xÉÏÒ»µã£¬ÔòµãPµ½Æä½¹µãµÄ¾àÀëΪ10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁк¯ÊýÖÐÒÔ¦ÐΪÖÜÆÚ£¬ÔÚ£¨0£¬$\frac{¦Ð}{2}}$£©Éϵ¥µ÷µÝ¼õµÄÊÇ£¨¡¡¡¡£©
A£®y=£¨cot1£©tanxB£®y=|sinx|C£®y=-cos2xD£®y=-tan|x|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èôij¶àÃæÌåµÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºcm£©£¬
¢ÙÔò´Ë¶àÃæÌåµÄÌå»ýÊÇ$\frac{5}{6}$cm3£¬
¢Ú´Ë¶àÃæÌåÍâ½ÓÇòµÄ±íÃæ»ýÊÇ3¦Ðcm2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=x+$\frac{1-a}{x}$-alnx£¬a¡ÊR£®
£¨¢ñ£©ÌÖÂÛº¯Êýf£¨x£©¼«ÖµµãµÄ¸öÊý£»
£¨¢ò£©Èç¹ûÇø¼ä[1£¬e]£¨e=2.71828¡­£©ÉÏ×Ü´æÔÚÒ»µãx0£¬Ê¹x0+$\frac{1}{x_0}$£¼a£¨lnx0+$\frac{1}{x_0}$£©³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®½«¼×£¬ÒÒµÈ4Ãû½»¾¯·ÖÅäµ½Èý¸ö²»Í¬Â·¿ÚÊèµ¼½»Í¨£¬Ã¿¸ö·¿ÚÖÁÉÙÒ»ÈË£¬ÇÒ¼×£¬ÒÒ²»ÔÚͬһ·¿ÚµÄ·ÖÅä·½°¸¹²ÓУ¨¡¡¡¡£©
A£®12B£®24C£®30D£®36

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=ax3+bx+1£¨a¡¢b¡ÊRÇÒa¡Ù0£©£¬Èôf£¨2£©=3£¬Ôòf£¨-2£©=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚ¿Õ¼äÖ±½Ç×ø±êϵO-xyzÖУ¬ÒÑ֪ijËÄÃæÌåµÄËĸö¶¥µã×ø±ê·Ö±ðÊÇA£¨1£¬0£¬0£©£¬B£¨0£¬1£¬0£©£¬C£¨0£¬0£¬2£©£¬D£¨1£¬1£¬2£©£¬Ôò¸ÃËÄÃæÌåµÄÕýÊÓͼµÄÃæ»ý²»¿ÉÄÜΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®$\frac{\sqrt{14}}{2}$D£®2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ð´³ö1¡Á4£¬2¡Á5£¬3¡Á6£¬¡­£¬n£¨n+3£©µÄǰnÏîµÄºÍ¹«Ê½£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸