精英家教网 > 高中数学 > 题目详情
13.经过抛物线C:y2=2px(p>0)外的点A(-2,-4),且倾斜角为$\frac{π}{4}$的直线l与抛物线C交于M,N两点,且|AM|、|MN|、|AN|成等比数列.
(1)求抛物线C的方程;
(2)E,F为抛物线C上的两点,且OE⊥OF(O为坐标原点),求△OEF的面积的最小值.

分析 (1)直线MN的参数方程是$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=-4+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),代入抛物线方程求抛物线C的方程,利用参数的几何意义,结合|AM|、|MN|、|AN|成等比数列,建立方程求出p,即可求抛物线C的方程;
(2)利用抛物线的极坐标方程,确定S,即可求△OEF的面积的最小值.

解答 解:(1)直线MN的参数方程是$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=-4+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)…(1分)
代入抛物线方程得${t^2}-(8\sqrt{2}+2\sqrt{2}p)t+32+8p=0$
所以|AM|•|AN|=32+8p…(2分)$|MN{|^2}={(8\sqrt{2}+2\sqrt{2}p)^2}-4(32+8p)$…(3分)
解得p=1
所以抛物线方程为y2=2x…(4分)
(2)抛物线的极坐标方程为ρsin2θ=2cosθ,…(5分)
设$E({ρ_1},θ),F({ρ_2},\frac{3}{2}π+θ)$,${ρ_1}=\frac{2cosθ}{{{{sin}^2}θ}}$…(6分)${ρ_2}=\frac{2sinθ}{{{{cos}^2}θ}}$…(7分)
所以$S=\frac{1}{2}×\frac{2cosθ}{{{{sin}^2}θ}}×\frac{2sinθ}{{{{cos}^2}θ}}=\frac{4}{sin2θ}$…(8分)
当$2θ=\frac{π}{2}+2kπ$时,即$θ=\frac{π}{4}+kπ,k∈Z$所求面积取得最小值4…(10分)

点评 本题考查抛物线的性质,考查直线与抛物线的位置关系,考查等比数列的性质,正确运用直线的参数方程,抛物线的极坐标方程是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.一个无上盖容器的三视图如图所示,则该几何体的表面积为(5+$\sqrt{5}$)π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x和复数m满足(4+3i)x2+mx+4-3i=0,则|m|的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,分别过A、B两点作准线的垂线,垂足分别为A′、B′两点,以线段A′B′为直径的圆C过点(-2,3),则圆C的方程为(  )
A.(x+1)2+(y-2)2=2B.(x+1)2+(y-1)2=5C.(x+1)2+(y+1)2=17D.(x+1)2+(y+2)2=26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若某多面体的三视图如图所示(单位:cm),
①则此多面体的体积是$\frac{5}{6}$cm3
②此多面体外接球的表面积是3πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A是抛物线y2=4x的对称轴与准线的交点,点B是其焦点,点P在该抛物线上,且满足|PA|=m|PB|,当m取得最大值时,点P恰在以A,B为焦点的双曲线上,则双曲线的实轴长为(  )
A.$\sqrt{2}$-1B.2$\sqrt{2}$-2C.$\sqrt{2}$+1D.2$\sqrt{2}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将甲,乙等4名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲,乙不在同一路口的分配方案共有(  )
A.12B.24C.30D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:x2=4y,过点P(t,0)(其中t>0)作互相垂直的两直线l1,l2,直线l1与抛物线C相切于点Q(在第一象限内),直线l2与抛物线C相交于A,B两点.
(Ⅰ)当t=1时,求直线l1的方程;
(Ⅱ)求证:直线l2恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.向量$\overrightarrow{AB}$+$\overrightarrow{BO}$+$\overrightarrow{OM}$+$\overrightarrow{MB}$化简后等于(  )
A.$\overrightarrow{AC}$B.$\overrightarrow{BC}$C.$\overrightarrow{AM}$D.$\overrightarrow{AB}$

查看答案和解析>>

同步练习册答案