| A. | (x+1)2+(y-2)2=2 | B. | (x+1)2+(y-1)2=5 | C. | (x+1)2+(y+1)2=17 | D. | (x+1)2+(y+2)2=26 |
分析 设AB的斜率为k,得出AB的方程,与抛物线方程联立方程组,根据根与系数的关系得出圆的圆心坐标和半径,把(-2,3)代入圆方程解出k,从而得出圆的方程.
解答 解:抛物线的准线方程为x=-1,焦点F(1,0).
设AB的方程为y=k(x-1),联立方程组$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=k(x-1)}\end{array}\right.$,得y2-$\frac{4}{k}$y-4=0.
设A(x1,y1),B(x2,y2),则y1+y2=$\frac{4}{k}$,y1y2=-4.
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=4$\sqrt{\frac{1}{{k}^{2}}+1}$.
∴以A′B′为直径圆的圆C的圆心为(-1,$\frac{2}{k}$),半径为2$\sqrt{\frac{1}{{k}^{2}}+1}$.
圆C的方程为(x+1)2+(y-$\frac{2}{k}$)2=4($\frac{1}{{k}^{2}}$+1).
把(-2,3)代入圆的方程得1+(3-$\frac{2}{k}$)2=4($\frac{1}{{k}^{2}}$+1).解得k=2.
∴圆C的方程为:(x+1)2+(y-1)2=5.
故选:B.
点评 本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{4}$ | B. | 向右平移$\frac{π}{4}$ | C. | 向右平移$\frac{π}{8}$ | D. | 向左平移$\frac{π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2)g(2015)<g(2017) | B. | f(2)g(2015)>g(2017) | C. | g(2015)<f(2)g(2017) | D. | g(2015)>f(2)g(2017) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com