精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,底面,点分别在棱上,且 

(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.
(1)只需证PA⊥BC,AC⊥BC即可;(2);(3)故存在点E使得二面角是直二面角,此时

试题分析:(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
,∴AC⊥BC.
∴BC⊥平面PAC.             4分
(Ⅱ)∵D为PB的中点,DE//BC,

又由(Ⅰ)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
∴在Rt△ABC中,,∴.
∴在Rt△ADE中,
与平面所成的角的大小.                9分
(Ⅲ)∵DE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴
∴在棱PC上存在一点E,使得AE⊥PC,这时
故存在点E使得二面角是直二面角.
此时        14分
点评:本题主要考查了直线与平面所成的角以及二面角,属立体几何中的常考题型,较难.充分考查了学生的逻辑推理能力,空间想象力,以及识图能力。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的四棱锥中,已知 PA⊥平面ABCD
的中点.

(1)求证:MC∥平面PAD
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)三棱柱中,侧棱底面

(1)求异面直线所成角的余弦值;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在直三棱柱(侧棱垂直底面)中,,且异面直线所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 是边长为的正方形,平面与平面所成角为.

(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知二面角αPQβ的大小为60°,点C为棱PQ上一点,AβAC=2,∠ACP=30°,则点A到平面α的距离为(      )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题13分)
如图,在四棱锥中,平面,底面是菱形,.分别是的中点.

(1) 求证:
(2) 求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,二面角的大小是60°,线段.,AB与所成的角为30°.则AB与平面所成的角的正弦值是  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.

(1)求异面直线PA与CD所成的角;
(2)求证:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

同步练习册答案