精英家教网 > 高中数学 > 题目详情
(本题10分)三棱柱中,侧棱底面

(1)求异面直线所成角的余弦值;
(2)求证:
(1);(2)只需证

试题分析:(1)分别以CA、CB、CC1所在的直线为x轴、y轴、z轴建立空间直角坐标系.

所以      ………5分
(2)因为侧棱底面,又,所以,所以,又在正方形中,,所以,所以  ………10分
点评:用向量法求异面直线所成的角时,要注意向量的夹角和异面直线所成的角的联系和区别,两向量的夹角的范围为,两异面直线所成角的范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图的直三棱柱中,,点的中点.

(1)求证:∥平面
(2)求异面直线所成的角的余弦值;
(3)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示的三棱锥A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若点P为△ABC内的动点满足直线DP与平面ABC所成角的正切值为2,则点P在△ABC内所成的轨迹的长度为              

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中命题正确的是              .(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,菱形ABCD与矩形BDEF所在平面互相垂直,

(1)求证:FC∥平面AED
(2)若,当二面角为直二面角时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(如图),具有公共轴的两个直角坐标平面所成的二面角等于.已知内的曲线的方程是,求曲线内的射影的曲线方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将锐角为且边长是2的菱形,沿它的对角线折成60°的二面角,则(      )
①异面直线所成角的大小是       .
②点到平面的距离是       .
A.90°,B.90°,C.60°,D.60°,2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,底面,点分别在棱上,且 

(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?若存在,请确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图所示是一个半圆柱与三棱柱的组合体,其中,圆柱的轴截面是边长为4的正方形,为等腰直角三角形,.

试在给出的坐标纸上画出此组合体的三视图.

查看答案和解析>>

同步练习册答案