精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C所对的边分别为a、b、c,且acosB-bcosA=
1
2
c
,当tan(A-B)取最大值时,角C的值为______.
利用正弦定理化简已知的等式得:sinAcosB-sinBcosA=
1
2
sinC=
1
2
sin(A+B)=
1
2
(sinAcosB+cosAsinB),
整理得:sinAcosB=3cosAsinB,
两边除以cosAcosB得:tanA=3tanB,
则tan(A-B)=
tanA-tanB
1+tanAtanB
=
2tanB
1+3tan2B
=
2
3tanB+
1
tanB

∵A、B是三角形内角,且tanA与tanB同号,
∴A、B都是锐角,即tanA>0,tanB>0,
∴3tanB+
1
tanB
≥2
3
,当且仅当3tanB=
1
tanB
,即tanB=
3
3
时取等号,
∴tanA=3tanB=
3

∴A=
π
3
,B=
π
6

则C=
π
2

故答案为:
π
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案