精英家教网 > 高中数学 > 题目详情
一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或着打错得0分”. 某考生已确定有5道题的答案是正确的,其余题中,有一道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.
(1)求出该考生得40分的概率;
(2)写出该考生所得分数X的分布列,并求出X数学期望.
(1)(2)
X
25
30
35
40
P





试题分析:⑴其余3道题中,各题答对的概率分别为.
故得40分的概率为         6分
⑵X的取值为25、30、35、40            8分


,
. 分布列为
X
25
30
35
40
P




………13分
点评:求分布列的步骤:确定随机变量所取的值,求出各值对应的概率,汇总成分布列;由分布列可求得期望
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若事件相互独立,且,则( )
. ;  .;   .;    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某射击运动员射击所得环数ξ的分布列如下所示,则P(ξ=8)=(  )
ξ
7
8
9
10
P
0.21
m
0.29
0.22
A.0.31                B.0.38             C.0.41             D.0.28

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有2人在同一车厢内相遇的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

我区高三期末统一测试中某校的数学成绩分组统计如下表:
分组
频数
频率















合计


(1)求出表中的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;

(2)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在分以上的人数;
(3)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分
的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知ABCD是半径为2的圆的内接正方形,现在圆的内部随机取一点P,则点P落在正方形ABCD内部的概率为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:
登记所需时间(分)
1
2
3
4
5
频率
0.1
0.4
0.3
0.1
0.1
从第—个车主开始预约登记时计时(用频率估计概率),
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意  单位:名
 


总计
满意
50
30
80
不满意
10
20
30
总计
60
50
110
(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;
(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知集合,集合
集合
(1)列举出所有可能的结果;
(2)从集合中任取一个元素,求“”的概率
(3)从集合中任取一个元素,求“”的概率.

查看答案和解析>>

同步练习册答案