精英家教网 > 高中数学 > 题目详情
已知四棱锥的底面是等腰梯形,分别是的中点.

(1)求证:
(2)求二面角的余弦值.
(1)详见解析;(2)

试题分析:(1)可证,因为分别是的中点即可证。(2)以所在直线为x轴,y轴,z轴建立空间直角坐标系,先求各点的坐标然后求向量的坐标,再求面的一个法向量。由已知可知为面的一个法向量,用向量的数量积公式求两法向量所成角的余弦值。两法向量所成的角与所求二面角的平面角相等或互补。
试题解析:(1)分别是的中点.
           2分
由已知可知         3分

          4分

            5分
                  6分
(2)以所在直线为x轴,y轴,z轴,
建立如图所示的空间直角坐标系.         7分

由题设,, 得

           8分
设平面的法向量为
     可取,                          10分
平面的法向量为                                  11分
                            13分
由图形可知,二面角的余弦值为                 14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。

(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若abc三个向量共面,则实数λ等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正四面体的顶点分别在两两垂直的三条射线上,则在下列命题中,错误的为(   )
A.是正三棱锥
B.直线平面
C.直线所成的角是
D.二面角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.

(1)求此正四棱锥的体积.
(2)求直线BM与侧面PAB所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知非零向量a,b及平面α,若向量a是平面α的法向量,则a·b=0是向量b所在直线平行于平面α或在平面α内的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若∠A1AB=∠A1AD=60º,且A1A=3,则A1C的长为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的距离除以到的距离的值为的点的坐标满足(    )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案