精英家教网 > 高中数学 > 题目详情

设p:函数y=loga(x+1)(a>0且a≠1)在(0,+∞)上单调递减; q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.

≤a<1或a>.

解析试题分析:∵函数y=loga(x+1)在(0,+∞)上单调递减,
∴0<a<1,即p:0<a<1,                                2分
∵曲线y=x2+(2a-3)x+1与x轴交于不同的两点,
∴Δ>0,即(2a-3)2-4>0,解得a<或a>.
即q:a<或a>.                                     5分
∵p∧q为假,p∨q为真,
∴p真q假或p假q真,                                    6分
     或                  9分
解得≤a<1或a>.                           12分
考点:本题考查了简易逻辑的运用
点评:此类问题解题关键是先确定命题pq的真假情况,然后再利用真值表作出判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若存在,使得成立,求实数的取值范围;
(2)解关于的不等式
(3)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知满足不等式,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数,当时,,且对任意实数

求证:
(2)证明:是R上的增函数;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

建造一个容积为50,高为2长方体的无盖铁盒,问这个铁盒底面的长和宽各为多少时材料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米.

(1)将总造价y表示为关于的函数;
(2)问花园如何设计,总造价最少?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,解不等式
(2)若,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设函数,求函数的单调区间;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案