【题目】设函数().
(1)讨论函数的单调性;
(2)若关于x的方程有唯一的实数解,求a的取值范围.
【答案】(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.
【解析】
(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;
(2)有解,即,令,转化求函数只有一个实数解,根据(1)中的结论,即可求解.
(1),
当时,恒成立,
当时,,
综上,当时,递增区间时,无递减区间,
当时,递增区间时,递减区间时;
(2),
令,原方程只有一个解,只需只有一个解,
即求只有一个零点时,的取值范围,
由(1)得当时,在单调递增,
且,函数只有一个零点,原方程只有一个解,
当时,由(1)得在出取得极小值,也是最小值,
当时,,此时函数只有一个零点,
原方程只有一个解,
当且
递增区间时,递减区间时;
,当,
有两个零点,
即原方程有两个解,不合题意,
所以的取值范围是或.
科目:高中数学 来源: 题型:
【题目】在一项自“一带一路”沿线20国青年参与的评选中“高铁”、“支付宝”、“共享单车”和“网购”被称作中国“新四大发明”,曾以古代“四大发明”推动世界进步的中国,正再次以科技创新向世界展示自己的发展理念.某班假期分为四个社会实践活动小组,分别对“新四大发明”对人们生活的影响进行调查.于开学进行交流报告会.四个小组随机排序,则“支付宝”小组和“网购”小组不相邻的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点为,点在椭圆上.
(1)设点到直线的距离为,证明:为定值;
(2)若是椭圆上的两个动点(都不与重合),直线的斜率互为相反数,求直线的斜率(结果用表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面ABCD,是等边三角形,四边形ABCD是矩形,,F为棱PA上一点,且,M为AD的中点,四棱锥的体积为.
(1)若,N是PB的中点,求证:平面平面PCD;
(2)是否存在,使得平面FMB与平面PAD所成的二面角余弦的绝对值为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,点G为CD中点,平面EAD⊥平面ABCD.
(1)证明:BD⊥EG;
(2)若三棱锥,求菱形ABCD的边长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】长沙某超市计划按月订购一种冰激凌,每天进货量相同,进货成本为每桶5元,售价为每桶7元,未售出的冰激凌以每桶3元的价格当天全部处理完毕.根据往年销售经验,每天的需求量与当天最高气温(单位:)有关,如果最高气温不低于,需求量为600桶;如果最高气温(单位:)位于区间,需求量为400桶;如果最高气温低于,需求量为200桶.为了确定今年九月份的订购计划,统计了前三年九月份各天的最高气温数据,得下面的频数分布表:
最高气温() | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求九月份这种冰激凌一天的需求量(单位:桶)的分布列;
(2)设九月份一天销售这种冰激凌的利润为(单位:元),当九月份这种冰激凌一天的进货量(单位:桶)为多少时,的均值取得最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com