精英家教网 > 高中数学 > 题目详情

【题目】在以ABCDEF为顶点的五面体中,底面ABCD为菱形,∠ABC120°ABAEED2EFEFAB,点GCD中点,平面EAD⊥平面ABCD.

1)证明:BDEG

2)若三棱锥,求菱形ABCD的边长.

【答案】1)详见解析;(2.

【解析】

1)取中点,连,可得,结合平面EAD⊥平面ABCD,可证

平面ABCD,进而有,再由底面是菱形可得,可得

可证得平面,即可证明结论;

2)设底面边长为,由EFABAB2EF,求出体积,建立的方程,即可求出结论.

1)取中点,连

底面ABCD为菱形,

,平面EAD⊥平面ABCD

平面平面平面

平面平面

底面ABCD为菱形,

中点,

平面

平面平面

2)设菱形ABCD的边长为,则

,所以菱形ABCD的边长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解某校学生课外时间的分配情况,拟采用分层抽样的方法从该校的高一、高二、高三这三个年级中共抽取5个班进行调查,已知该校的高一、高二、高三这三个年级分别有1866个班级.

(Ⅰ)求分别从高一、高二、高三这三个年级中抽取的班级个数;

(Ⅱ)若从抽取的5个班级中随机抽取2个班级进行调查结果的对比,求这2个班级中至少有1个班级来自高一年级的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.杨辉三角中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(

A.直线与直线相互平行的充分不必条件

B.直线垂直平面内无数条直线直线垂直于平面的充分条件

C.已知为非零向量,则的充要条件

D.:存在.:任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的程序框图中,若输入,则输出的值是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

A. 3 B. 7 C. 11 D. 33

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的单调性;

2)若关于x的方程有唯一的实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求圆的普通方程和直线的直角坐标方程;

2)设是直线上任意一点,过作圆切线,切点为,求四边形(点为圆的圆心)面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

1)讨论函数的单调性;

2)若为整数,函数恰好有两个零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程是为参数),曲线的参数方程是为参数).

(Ⅰ)将曲线的参数方程化为普通方程;

(Ⅱ)求曲线上的点到曲线的距离的最大值和最小值.

查看答案和解析>>

同步练习册答案