精英家教网 > 高中数学 > 题目详情
已知向量
a
b
满足|
a
|=1,|
a
+
b
|=
7
a
b
>=
π
3
,则|
b
|=(  )
分析:把|
a
+
b
|=
7
平方,然后由数量积得运算可得|
b
|2
+|
b
|
-6=0,解之即可.
解答:解:∵|
a
+
b
|=
7
,∴(
a
+
b
)2=7

展开可得|
a
|2+2|
a
||
b
|cos<
a
b
>+|
b
|2=7

|
b
|2
+|
b
|
-6=0,分解因式可得(|
b
|+3)(|
b
|-2)=0

解得|
b
|=2
故选A
点评:本题考查向量的数量积及夹角,涉及一元二次方程的求解,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
+
b
|=
3
|
a
-
b
|
|
a
|=|
b
|=1
,则|
3a
-2
b
|
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2,|
b
|=1,
a
b
的夹角为60°,则|
a
-2
b
|等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=
2
,|
b
|=3,
a
b
的夹角为45°,求|3
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a,b满足|a|=2,|b|=3,|2a+b|=
37
,则a与b
的夹角为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)已知向量
a
b
满足|
a
|=2|
b
|≠0,且关于x的函数f(x)=2x3+3|
a
|x2+6
a
b
x+5 在实数集R上单调递增,则向量
a
b
的夹角的取值范围是(  )

查看答案和解析>>

同步练习册答案