精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=|x+1|+ax(x∈R).
(1)证明:当a>1时,f(x)在R上是增函数;
(2)若函数f(x)存在两个零点,求a的取值范围.

分析 (1)化简f(x)=|x+1|+ax=$\left\{\begin{array}{l}{(a-1)x-1,x≤-1}\\{(a+1)x+1,x>-1}\end{array}\right.$,从而由一次函数判断函数的单调性;
(2)可化为函数y=|x+1|与函数y=-ax的图象有两个交点,作图象,结合图象解得.

解答 解:(1)证明:∵f(x)=|x+1|+ax=$\left\{\begin{array}{l}{(a-1)x-1,x≤-1}\\{(a+1)x+1,x>-1}\end{array}\right.$,
∴f(x)在(-∞,-1]上单增,在(-1,+∞)上单增,
且函数f(x)=|x+1|+ax连续,
故f(x)在R上是增函数;
(2)∵函数f(x)存在两个零点,
∴函数y=|x+1|与函数y=-ax的图象有两个交点,
作函数y=|x+1|与函数y=-ax的图象如下,

结合图象可知,-1<-a<0,
故0<a<1.

点评 本题考查了分段函数的应用及函数的单调性的应用,同时考查了数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足a1=1,a2=2,an=$\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$(n≥3,且n∈N*),则a2015=(  )
A.$\frac{1}{2}$B.1C.2D.2-2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定义在R上的偶函数f(x),当x∈(-∞,0]时的解析式为f(x)=x2+2x
(1)求函数f(x)在R上的解析式;
(2)画出函数f(x)的图象并直接写出它的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义在R上的f(x)为奇函数,对任意两个正数m,n,总有f(mn)=f(m)+f(n),且当x>1时,f(x)>0.
(Ⅰ)求f(1),并判断f(x)在(0,+∞)上的单调性;
(Ⅱ)设g(x)=sin2x+mcosx-2m,集合M={m|对任意的x∈[0,$\frac{π}{2}$],g(x)<0},N={m|对任意的x∈[0,$\frac{π}{2}$],f[g(x)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.找规律填数:$\frac{1}{2}$,$\frac{3}{5}$,$\frac{1}{2}$,$\frac{7}{17}$,$\frac{2n-1}{{n}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右顶点分别为A(-5,0),B(5,0),点M是椭圆上异于A,B的动点,且直线AM与MB的斜率之积为$-\frac{16}{25}$;
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若抛物线y2=2px(p>0)的焦点与椭圆C的右焦点重合,求抛物线上的点到直线l:3x+y+2=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取的极大值为10,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知抛物线y=ax2+bx+c经过O(0,0),A(4,0),B(3,$\sqrt{3}$)三点,连接AB,过点B作BC∥x轴交该抛物线于点C.
(1)求这条抛物线的函数关系式.
(2)两个动点P、Q分别从O、A同时出发,以每秒1个单位长度的速度运动.其中,点P沿着线段OA向A点运动,点Q沿着线段AB向B点运动.设这两个动点运动的时间为t(秒)(0<t≤2),△PQA的面积记为S.
①求S与t的函数关系式;
②当t为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
(3)是否存在这样的t值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\sqrt{lo{g}_{\frac{1}{2}}tanx}$的定义域是{x|kπ<x≤$\frac{π}{4}$+kπ,k∈Z}.

查看答案和解析>>

同步练习册答案