精英家教网 > 高中数学 > 题目详情

【题目】在锐角三角形中,若,则的取值范围是__________

【答案】

【解析】sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,

可得sinBcosC+cosBsinC=2sinBsinC,①

由三角形ABC为锐角三角形,则cosB>0,cosC>0,

式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,

tanA=﹣tan(π﹣A)=﹣tan(B+C)=②,

tanAtanBtanC=﹣tanBtanC,

tanB+tanC=2tanBtanC可得tanAtanBtanC =

tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,

式得1﹣tanBtanC<0,解得t>1,

tanAtanBtanC

由t1得,﹣<0,

因此tanAtanBtanC的最小值为8,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】综合题。
(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为多少?
(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )
A.命题“若x2>1,则x>1”的否命题为“若x2>1,则
B.命题“?x>1”的否定是“,x2>1”
C.命题“若x=y,则cosx=cosy"的逆否命题为假命题
D.命题“若x=y,则cosx=cosy"的逆命题为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)在(﹣∞,0)上单调递减,且f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集是(
A.(﹣3,﹣1)
B.(﹣1,1)∪(1,3)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:P=P0ekt , (k,P0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.
A. 小时
B. 小时
C.5小时
D.10小时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)2x.

(Ⅰ)若f(x)=,求x的值;

(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂用鲜牛奶在某台设备上生产AB两种奶制品.生产1A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产AB两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

W

12

15

18

P

0.3

0.5

0.2

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.

(I)Z的分布列和均值;

(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的外接圆半径,角ABC的对边分别是abc,且.

I)求角B和边长b

II)求面积的最大值及取得最大值时的ac的值,并判断此时三角形的形状.

查看答案和解析>>

同步练习册答案