精英家教网 > 高中数学 > 题目详情
已知f(x)=sin(x+
π
6
)+sin(x-
π
6
)+cosx

(1)求函数f(x)的最小正周期;
(2)求f(x)在区间(0,
π
3
)
的值域.
分析:(1)将f(x)化为f(x)=2sin(x+
π
6
)即可求得其周期;
(2)由0<x<
π
3
,可求得
π
6
<x+
π
6
π
2
,从而可求f(x)在区间(0,
π
3
)
的值域.
解答:解:(1)∵f(x)=
3
sinx+cosx=2sin(x+
π
6
),
∴f(x)的最小正周期T=2π;
(2)∵0<x<
π
3

π
6
<x+
π
6
π
2

1
2
<sin(x+
π
6
)<1,
∴1<2sin(2x+
π
6
)<2,
∴函数的值域为(1,2).
点评:本题考查正弦函数的定义域和值域,着重考查辅助角公式及正弦函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=sin(2x-
π
6
)-2m
x∈[0,
π
2
]
上有两个零点,则m的取值范围为(  )
A、(
1
4
1
2
)
B、[
1
4
1
2
]
C、[
1
4
1
2
D、(
1
4
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,则下列结论中正确的是(  )
A、函数y=f(x)•g(x)的周期为2
B、函数y=f(x)•g(x)的最大值为1
C、将f(x)的图象向左平移
π
2
个单位后得到g(x)的图象
D、将f(x)的图象向右平移
π
2
个单位后得到g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sinπx(x≥0)
f(x+1)-1(x<0)
,若f(-
5
6
)+f(m)=-1
,且1<m<2,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin[
π
3
(x+1)]-
3
cos[
π
3
(x+1)]
,则f(1)+f(2)+…+f(2011)+f(2012)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(2x+
π
6
)+cos(2x-
π
3
)

(Ⅰ)求f(x)的最大值及取得最大值时x的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若f(C)=1,c=2
3
,sinA=2sinB,求△ABC的面积.

查看答案和解析>>

同步练习册答案