精英家教网 > 高中数学 > 题目详情

已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的表达式.

解:设f(x)=ax2+bx+c
由f(0)=1得c=1
∴f(x)=ax2+bx+1
∴f(x+1)=a(x+1)2+b(x+1)+1=ax2+(2a+b)x+a+b+1
∴f(x+1)-f(x)=ax2+(2a+b)x+a+b+1-ax2-bx-1=2ax+a+b
∵f(x+1)-f(x)=2x
∴2ax+a+b=2x
∴2a=2且a+b=0
∴a=1,b=-1
∴f(x)=x2-x+1
分析:先由二次函数,设出其解析式,再利用f(0)=1,求得c,再利用待定系数法应用f(x+1)-f(x)=2x求解.
点评:本题主要考查用待定系数法求函数解析式,这类题目,一般是在定型之后,所采用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是
(0<m<
2
2
内的任一实数)
(0<m<
2
2
内的任一实数)
.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,且函数y=f(x+3)为偶函数,则在函数值f(-1)、f(2)、f(5)、f(7)中,最大的一个不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是________.(写出一个即可)

查看答案和解析>>

科目:高中数学 来源:2009年浙江省温州市摇篮杯高一数学竞赛试卷(解析版) 题型:填空题

已知二次函数f(x)=x2-2mx+1,若对于[0,1]上的任意三个实数a,b,c,函数值f(a),f(b),f(c)都能构成一个三角形的三边长,则满足条件的m的值可以是    .(写出一个即可)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆外国语学校高一(上)期末数学试卷(解析版) 题型:选择题

已知二次函数f(x)=ax2+bx+c,且函数y=f(x+3)为偶函数,则在函数值f(-1)、f(2)、f(5)、f(7)中,最大的一个不可能是( )
A.f(-1)
B.f(2)
C.f(5)
D.f(7)

查看答案和解析>>

同步练习册答案