精英家教网 > 高中数学 > 题目详情

【题目】椭圆C: =1的右焦点F,过焦点F的直线l0⊥x轴,P(x0 , y0)(x0y0≠0)为C上任意一点,C在点P处的切线为l,l与l0相交于点M,与直线l1:x=3相交于N.
(I) 求证;直线 =1是椭圆C在点P处的切线;
(Ⅱ)求证: 为定值,并求此定值;
(Ⅲ)请问△ONP(O为坐标原点)的面积是否存在最小值?若存在,请求出最小及此时点P的坐标;若不存在,请说明理由.

【答案】证明:(Ⅰ)∵P(x0 , y0)在椭圆C: 上,
,即
∴直线 过点P(x0 , y0),
,消去y,并利用 ,得
即6x2﹣12x0x+6x02=0,即6(x﹣x02=0,∴x=x0
∴直线 =1与椭圆C在点P处有且仅有一个交点,
综上,直线 是椭圆C在点P处的切线.
(Ⅱ)在 中,令x=1,得y= ,∴M(1, ),
中,令x=3,得y= ,∴N(3, ),
又F(1,0),∴|FM|=| |=2| |,
|FN|= =2 =2 =2
= 为定值.
解:(Ⅲ)在直线 中,令y=0,得x=
∴切线l与x轴的交点为G( ,0),
SONP= = =
= | || |
= | || |
=
=| |=
SONP= = = =
令3﹣x0= ,由﹣ ,得 ,且t
= = = =
∴当t= ,x0=1时,△ONP(O为坐标原点)的面积是存在最小值{SONP}min=
此时P(1, ).

【解析】(Ⅰ)推导出直线 过点P(x0 , y0),由 ,得 ,由此能证明直线 是椭圆C在点P处的切线.(Ⅱ)在 中,令x=1,M(1, ),令x=3,得N(3, ),由此求出|FM|,|FN|,由此能证明 为定值.(Ⅲ)求出切线l与x轴的交点为G( ,0),推导出SONP= = ,令3﹣x0= ,利用配方法能求出△ONP的面积的最小值及对应的P点坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知等边△ABC中,E,F分别为AB,AC边的中点,N为BC边上一点,且CN= BC,将△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M为EF中点.

(1)求证:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题方程有两个不等的实根;命题方程无实根,若“”为真,“”为假,则实数的取值范围为___________.(写成区间的形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点在抛物线上,过点垂直于轴,垂足为,设.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若点上的动点,过点作抛物线的两条切线,切点分别为,设点到直线的距离为,求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.

(1)求椭圆的方程;

(2)已知是椭圆上的两点,是椭圆上位于直线两侧的动点.

①若直线的斜率为,求四边形面积的最大值;

②当运动时,满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别如下图所示。

0

1

0

2

2

0

3

1

2

4

2

3

1

1

0

2

1

1

0

1

从数据上看, ________________机床的性能较好(填“甲”或者“乙”).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线的准线轴交于椭圆的右焦点的左焦点.椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长其交于点 上一动点,且在之间移动.

(1)当取最小值时,求的方程;

(2)若的边长恰好是三个连续的自然数,当面积取最大值时,求面积最大值以及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 C: 的焦距为2,且过点,右焦点为.设A,B 是C上的两个动点,线段 AB 的中点M 的横坐标为,线段AB的中垂线交椭圆C于P,Q 两点.

(1)求椭圆 C 的方程;

(2)设M点纵坐标为m,求直线PQ的方程,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBDAE⊥平面ABD,且AE

)求证:DE⊥AC

)求DE与平面BEC所成角的正弦值;

)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.

查看答案和解析>>

同步练习册答案