精英家教网 > 高中数学 > 题目详情

【题目】动点在抛物线上,过点垂直于轴,垂足为,设.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若点上的动点,过点作抛物线的两条切线,切点分别为,设点到直线的距离为,求的最小值。

【答案】(Ⅰ)(Ⅱ)

【解析】

(I)设点,利用表示为的形式,然后代入抛物线方程,化简后可求得轨迹的方程.(II)设点,利用导数求得切线的方程.对比后可求得直线的方程,再利用点到直线的距离公式求得的表达式,化简后利用基本不等式求得的最小值.

(1)设点

则由,得

因为点在抛物线上,所以点的轨迹的方程为:

(2)设点

,得;所以

的方程为

又点在直线上,所以

,故,将其代入

同理得:

因为点均满足方程

所以的方程为

于是

,则

当且仅当时取等号所以的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设直线ly=2x+2,若l与椭圆 的交点为A,B,点P为椭圆上的动点,则使△PAB的面积为 的点P的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某海礁A处有一风暴中心,距离风暴中心A正东方向200km的B处有一艘轮船,正以北偏西a(a为锐角)角方向航行,速度为40km/h.已知距离风暴中心180km以内的水域受其影响.

(1)若轮船不被风暴影响,求角α的正切值的最大值?

(2)若轮船航行方向为北偏西45°,求轮船被风暴影响持续多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有如下3个命题;

①双曲线上任意一点到两条渐近线的距离乘积是定值;

②双曲线的离心率分别是,则是定值;

③过抛物线的顶点任作两条互相垂直的直线与抛物线的交点分别是,则直线过定点;其中正确的命题有(  )

A. 3个 B. 2个 C. 1个 D. 0个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的焦距为,离心率为,椭圆的右顶点为.

(1)求该椭圆的方程;

(2)过点作直线交椭圆于两个不同点,求证:直线的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线Ca>0,b>0)的渐近线方程为yxO为坐标原点,点在双曲线上.

(I)求双曲线C的方程.

(II)若斜率为1的直线l与双曲线交于PQ两点,且=0,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1的右焦点F,过焦点F的直线l0⊥x轴,P(x0 , y0)(x0y0≠0)为C上任意一点,C在点P处的切线为l,l与l0相交于点M,与直线l1:x=3相交于N.
(I) 求证;直线 =1是椭圆C在点P处的切线;
(Ⅱ)求证: 为定值,并求此定值;
(Ⅲ)请问△ONP(O为坐标原点)的面积是否存在最小值?若存在,请求出最小及此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图的算法思路源于我国古代数学中的秦九韶算法,执行该程序框图,则输出的结果S表示的值为(

A.a0+a1+a2+a3
B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3
D.a0x3+a1x2+a2x+a3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1中,点E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值

查看答案和解析>>

同步练习册答案