【题目】在平面直角坐标系中,已知椭圆的焦距为,离心率为,椭圆的右顶点为.
(1)求该椭圆的方程;
(2)过点作直线交椭圆于两个不同点,求证:直线的斜率之和为定值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+bx2+cx﹣1当x=﹣2时有极值,且在x=﹣1处的切线的斜率为﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[﹣1,2]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为棱AB,BC的中点,点F在侧棱B1B上,且B1E⊥C1F,A1C1⊥B1C1.
(1)求证:DE∥平面A1C1F;
(2)求证:B1E⊥平面A1C1F
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点在抛物线上,过点作垂直于轴,垂足为,设.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)若点是上的动点,过点作抛物线:的两条切线,切点分别为,设点到直线的距离为,求的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.
(1)求椭圆的方程;
(2)已知、是椭圆上的两点,是椭圆上位于直线两侧的动点.
①若直线的斜率为,求四边形面积的最大值;
②当运动时,满足,试问直线的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线的准线与轴交于椭圆的右焦点为的左焦点.椭圆的离心率为,抛物线与椭圆交于轴上方一点,连接并延长其交于点, 为上一动点,且在之间移动.
(1)当取最小值时,求和的方程;
(2)若的边长恰好是三个连续的自然数,当面积取最大值时,求面积最大值以及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图是函数y=Asin(ωx+φ)(x∈R)在区间 上的图象,为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点( )
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
B.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍,纵坐标不变
D.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com