精英家教网 > 高中数学 > 题目详情
已知函数f(x)=asinx+cosx,a为是常数,x∈R.
(1)请指出函数f(x)的奇偶性,并给予证明;
(2)当a=
3
,x∈[0,
π
2
]时,求f(x)的取值范围.
考点:两角和与差的正弦函数
专题:三角函数的图像与性质
分析:(1)利用函数奇偶性的定义分别通过f(-x)=f(x)与f(-x)=-f(x),求得a.
(2)利用两角和公式对函数解析式化简,根据x的范围和正弦函数的性质求得函数的值域.
解答: 解:(1)f(-x)=-asinx+cosx=f(x)
即-asinx+cosx=asinx+cosx,
∴2asinx=0,
∴a=0,
∴当a=0时,f(x)是偶函数. 
由f(-x)=-f(x)
∴-asinx+cosx=-asinx-cosx,
∴2cosx=0,
仅对x-kπ+
π
2
,k∈Z成立,
∴f(x)是不是奇函数.
综上:当a=0时,f(x)是偶函数;当a≠0时,f(x)是非奇非偶函数.
(2)当a=
3
时,f(x)=
3
sinx+cosx=2sin(x+
π
6
)

x∈[0,
π
2
]
,得
π
6
≤x+
π
6
3
1
2
≤sin(x+
π
6
)≤1

∴f(x)∈[1,2].
点评:本题主要考查函数的奇偶性,三角函数恒等变换的应用,三角函数图象与性质.要求学生对三角函数基础知识能熟练记忆并灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an},其中a1=2,an-an-1=2n-1(n≥2,n∈N*
(1)求{an}的通项公式;
(2)若数列bn=2log2an-1,记数列{
2
bnbn+1
}的前n项和为Sn,求使Sn
9
10
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=
3
2
,连接CE并延长交AD于F.
(1)求平面BCP与平面DCP的夹角的余弦值.                 
(2)在线段BP上是否存在一点H满足
BH
BP
,使得DH与平面DPC所成角的正弦值为
1
74
?若存在,求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+
5
2+y2=36,N(
5
,0),点P是圆M上的任意一点,线段NP的垂直平分线和半径MP相较于点Q.
(Ⅰ)当点P在圆M上运动时,求点Q的轨迹C的方程;
(Ⅱ)若圆x2+y2=4的切线与曲线C相交于A、B两点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正四棱台的上、下底面边长分别为4cm和10cm,高为4cm,求正四棱台的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+3x+b(a<0,a、b∈R).设关于x的方程f(x)=0的两个实根分别为α、β
(1)若|α-β|=1,求a、b的关系式;
(2)若a、b均为负整数,且|α-β|=1,求f(x)的解析式;
(3)在(2)的条件下,若方程f(x)=(2m+2)x+2m+4至少有一个正根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
3
ax3+
1
2
bx2+cx+d(a,b,c,d为常数且a≠0),g(x)=f′(x)(f′(x)为f(x)的导数).
(Ⅰ)若g(x)满足:①g′(0)>0;②对于任意实数x,都有g(x)≥0.求μ=
g(1)
g′(0)
的最小值;
(Ⅱ)若a=1且对于任意实数x∈(-∞,0)有f′(x)>0;对于任意实数x∈(0,4)有f′(x)<0.求b的取值范围;
(Ⅲ)若a=1,b=-2e,讨论关于x的方程lnx=x•g(x)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆x2+
y2
4
=1的左,右两个顶点分别为A、B.曲线C是以A、B两点为顶点,离心率为
5
的双曲线.设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T.
(1)求曲线C的方程;
(2)设P、T两点的横坐标分别为x1、x2,证明:x1•x2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:x2+|x-2|>3.

查看答案和解析>>

同步练习册答案