精英家教网 > 高中数学 > 题目详情
(2011•洛阳二模)从1,2,3,4,5,6,7中任取两个不同的数,事件A为“取到的两个数的和为偶数”,事件B为“取到的两个数均为偶数“,则P(B|A)=(  )
分析:用列举法求出事件A为“取到的两个数的和为偶数”,事件B为“取到的两个数均为偶数”所包含的基本事件的个数,求p(A),P(AB),根据条件概率公式,即可得到结论.
解答:解:事件A=“取到的两个数之和为偶数”所包含的基本事件有:(1,3)、(1,5)、(1,7),(3,5)、(3,7),(5,7),(2,4),(2,6),(4,6)
∴p(A)=
9
C
2
7
=
3
7

事件B=“取到的两个数均为偶数”所包含的基本事件有(2,4),(2,6),(4,6)
∴P(AB)=
3
C
2
7
=
1
7

∴P(B|A)=
P(AB)
P(A)
=
1
3

故选D.
点评:本题考查条件概率的计算公式,同时考查学生对基础知识的记忆、理解和熟练程度.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)的定义域为R,f(x)=
x,0≤x≤1
(
1
2
)x-1,-1≤x<0.
且对任意的x∈R都有f(x+1)=f(x-1),若在区间[-1,3]上函数g(x)=f(x)-mx-m恰有四个不同零点,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)曲线y=x2ex+2x+1在点P(0,1)处的切线与x轴交点的横坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)已知函数f(x)=(ax2-2x+a)e-x
(I)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设g(x)=-
f′(x)
e-x
-a-2,h(x)=
1
2
x2-2x-lnx
,若x>l时总有g(x)<h(x),求实数c范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)从8名女生,4名男生中选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为
112
112
. (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)=|2x+1|-|x-2|.
(1)若关于x的不等式a≥f(x)存在实数解,求实数a的取值范围;
(2)若?x∈R,f(x)≥-t2-
52
t-1
恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案