精英家教网 > 高中数学 > 题目详情

在△ABC中,∠A=60°,AB+AC=10,面积数学公式,则BC=________.


分析:由正弦定理的面积公式,结合题中数据算出bc=16,利用配方可得b2+c2=(b+c)2-2bc=68.最后根据余弦定理加以计算,即可得到a2=b2+c2-2bccosA=52,从而得到a=BC=2
解答:设AB=c,BC=a,AC=b,则
∵∠A=60°,△ABC面积
bcsinA=4,即bc×=4,解之得bc=16
又∵AB+AC=b+c=10,∴b2+c2=(b+c)2-2bc=100-32=68
根据余弦定理,得
a2=b2+c2-2bccosA=68-2×16×cos60°=52
由此可得:a==2,即BC=2
故答案为:2
点评:本题给出△ABC中两边的长度之和与夹角大小,并且在知道三角形面积的情况下求第三边的大小.着重考查了面积正弦定理公式和利用正余弦定理解三角形的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂一模)已知函数f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函数f(x)的单调减区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C的对边,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)在△ABC中,a、b、c为角A、B、C所对的三边.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,设内角B为x,周长为y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=
π
4
,则(cosA一cosC)2的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C的对边分别为a、b、c设向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圆半径为1,且abx=a+b试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知a=2,b=
7
,∠B=
π
3
,则△ABC的面积为(  )

查看答案和解析>>

同步练习册答案