精英家教网 > 高中数学 > 题目详情
7.如图甲,在边长为4的等边三角形ABC中,点E,F分别为AB,AC上一点,且EF∥BC,EF=2a,沿EF将三角形AEF折起,使得平面AEF⊥平面EFCB,形成一个如图乙所示的四棱锥,设O为EF的中点.
(1)求证:AO⊥BE;
(2)求二面角F-AE-B的正弦值.

分析 (Ⅰ)推导出AO⊥EF,AO⊥平面EFCB,由此能证明AO⊥BE.
(Ⅱ)取CB的中点D,以O为原点,分别以OE,OD,OA为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角F-AE-B的正弦值.

解答 (本小题满分12分)
证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,
∴AO⊥EF.
∵平面AEF⊥平面EFCB,平面AEF∩平面EFCB=EF,AO?平面AEF,
∴AO⊥平面EFCB,又BE?平面EFCB,
∴AO⊥BE. …(4分)
解:(Ⅱ)如图,取CB的中点D,连接OD,
以O为原点,分别以OE,OD,OA为x,y,z轴建立空间直角坐标系,
则$A(0,\;\;0,\;\;\sqrt{3}a),\;\;E(a,\;\;0,\;\;0),\;\;B(2,\;\;2\sqrt{3}-\sqrt{3}a,\;\;0)$,
∴$\overrightarrow{AE}=(a,\;\;0,\;\;-\sqrt{3}a),\;\;\overrightarrow{EB}=(2-a,\;\;2\sqrt{3}-\sqrt{3}a,\;\;0)$.
设平面AEB的法向量为$\overrightarrow{n_1}=(x,\;\;y,\;\;z)$,
则$\left\{\begin{array}{l}{\overrightarrow n_1}•\overrightarrow{AE}=ax-\sqrt{3}az=0\\{\overrightarrow n_1}•\overrightarrow{EB}=(2-a)x+(2\sqrt{3}-\sqrt{3}a)y=0\end{array}\right.$,
令$z=\sqrt{3}$,则$x=3,\;\;y=-\sqrt{3}$,$\overrightarrow{n_1}=(3,\;\;-\sqrt{3},\;\;\sqrt{3})$,
平面AEF的法向量为$\overrightarrow{n_2}=(0,\;\;1,\;\;0)$,
∴$cos?\overrightarrow{n_1},\;\;\overrightarrow{n_2}>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|\overrightarrow{n_1}||\overrightarrow{n_2}|}}=\frac{{-\sqrt{3}}}{{\sqrt{15}}}=-\frac{{\sqrt{5}}}{5}$,
∴二面角F-AE-B的正弦值为$\sqrt{1-\frac{1}{5}}$=$\frac{{2\sqrt{5}}}{5}$. …(12分)

点评 本题考查线线垂直的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在正四棱柱ABCD-A1B1C1D1中,AB=AD=2,AA1=4,则正四棱柱的外接球的表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知${∫}_{0}^{1}$(x2-mx)dx=$\frac{1}{3}$,则实数m的值为(  )
A.$\frac{1}{3}$B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合 A={y|y<a,或y>a2+1},B={y|y=2x-1,2≤x≤3},若A∩B=∅,则实数a的取值范围是(  )
A.(-∞,2)B.$[{\sqrt{3},2}]$C.$(-∞,-2)∪[{\sqrt{3},2}]$D.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了了解四川省各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“四川省有哪几个著名的旅游景点?”统计结果如表.
组号分组回答正确的人数回答正确的人数
占本组的频率
第1组[15,25)a0.5
第2组[25,35)18x
第3组[35,45)b0.9
第4组[45,55)90.36
第5组[55,65]3y
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
(3)通过直方图求出年龄的众数,平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在中学生测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:
等级优秀合格尚待改进
频数15x5
表1:男生
等级优秀合格尚待改进
频数153y
表2:女生
(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,试采用独立性检验进行分析,能否在犯错误的概率不超过0.1的前提下认为“测评结果优秀与性别有关”.
 男生女生总计
优秀   
非优秀   
总计   
参考数据与公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
P(K2>k00.050.050.01
K02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于函数f(x)=sinxcosx的性质的描述,不正确的是(  )
A.任意x∈R,f(π+x)=f(x)B.任意x∈R,$f(\frac{π}{2}+x)=f(\frac{π}{2}-x)$
C.不存在${x_0}∈(0,\frac{π}{2})$,使f(x0)=0D.不存在${x_0}∈(0,\frac{π}{2})$,使$f({x_0})>\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四边形ABCD中,AD⊥AB,DC∥AB,$AD=AE=DC=\frac{1}{2}AB=4$,△MDC是等边三角形,且平面MDC⊥平面ABCD.
(Ⅰ)证明:EC∥平面MAD;
(Ⅱ)求三棱锥B-AMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,a=4,b=2$\sqrt{6},B={60°}$,则此三角形解的情况是(  )
A.一解或两解B.两解C.一解D.无解

查看答案和解析>>

同步练习册答案