精英家教网 > 高中数学 > 题目详情
19.关于函数f(x)=sinxcosx的性质的描述,不正确的是(  )
A.任意x∈R,f(π+x)=f(x)B.任意x∈R,$f(\frac{π}{2}+x)=f(\frac{π}{2}-x)$
C.不存在${x_0}∈(0,\frac{π}{2})$,使f(x0)=0D.不存在${x_0}∈(0,\frac{π}{2})$,使$f({x_0})>\frac{1}{2}$

分析 利用二倍角公式,求出函数的对称轴与函数的周期,判断选项即可.

解答 解:函数f(x)=sinxcosx=$\frac{1}{2}$sin2x,函数的周期为:π,任意x∈R,f(π+x)=f(x)正确.
对称轴为:x=$\frac{1}{2}$kπ+$\frac{π}{4}$,k∈Z,
所以任意x∈R,$f(\frac{π}{2}+x)=f(\frac{π}{2}-x)$不正确;
当${x_0}∈(0,\frac{π}{2})$,使f(x0)∈(0,$\frac{1}{2}$].所以不存在${x_0}∈(0,\frac{π}{2})$,使f(x0)=0正确;
当${x_0}∈(0,\frac{π}{2})$,使f(x0)∈(0,$\frac{1}{2}$].所不存在${x_0}∈(0,\frac{π}{2})$,使$f({x_0})>\frac{1}{2}$正确.
故选:B.

点评 本题考查三角函数的简单性质的应用,命题的真假的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列函数在其定义域内,既是奇函数又是增函数的为(  )
A.y=-$\frac{1}{x}$B.y=x|x|C.y=x+1D.y=-x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知m,n是两条不同直线,α,β是两个不同平面,给出四个命题:
①若α∩β=m,n?α,n⊥m,则 α⊥β     ②若m⊥α,m⊥β,则α∥β
③若m⊥α,n⊥β,m⊥n,则α⊥β          ④若m∥α,n∥β,m∥n,则α∥β
其中正确的命题是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图甲,在边长为4的等边三角形ABC中,点E,F分别为AB,AC上一点,且EF∥BC,EF=2a,沿EF将三角形AEF折起,使得平面AEF⊥平面EFCB,形成一个如图乙所示的四棱锥,设O为EF的中点.
(1)求证:AO⊥BE;
(2)求二面角F-AE-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x∈Z|lg(x2-x+8)≤1},B={x|x=t2,t∈A},A∩B=(  )
A.B.{0,1}C.{0,1,4}D.{-1,0,1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,直线l经过点(1,1),若对任意的实数m,直线l被圆C截得的弦长都是定值,则直线l的方程为2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C经过点$A(-\sqrt{3},-1),B(1,\sqrt{3})$,且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P,Q两点.
(1)求圆C的方程;
(2)若$\overrightarrow{OP}•\overrightarrow{OQ}=-2$(点O为原点),求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,在(0,+∞)内为增函数的是(  )
A.y=sinxB.y=x3-xC.y=lnx-xD.y=xex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=acos({2x+\frac{π}{3}})-b$(a>0)的最大值为3,最小值为-1.
(1)求a,b的值;
(2)求当$x∈[{\frac{π}{4},\frac{7π}{12}}]$时,函数$g(x)=2bsin({2ax-\frac{π}{6}})+1$的值域.

查看答案和解析>>

同步练习册答案