·ÖÎö £¨1£©ÉèÔ²ÐÄC£¨a£¬a£©£¬°ë¾¶Îªr£®|AC|=|BC|=r£¬ÓÉ´ËÄÜÇó³öÔ²CµÄ·½³Ì£®
£¨2£©ÓÉ$\overrightarrow{OP}$•$\overrightarrow{OQ}$=2¡Á2¡Ácos£¼$\overrightarrow{OP}$£¬$\overrightarrow{OQ}$£¾=-2£¬µÃ¡ÏPOQ=120¡ã£¬Ô²ÐÄCµ½Ö±Ïßl£ºkx-y+1=0µÄ¾àÀëd=1£¬ÓÉ´ËÄÜÇó³ök=0£®
£¨3£©µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬Ô²CÒ²ÊÇÂú×ãÌâÒâµÄÔ²£»µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßm£ºy=kx+4£¬ÓÉ$\left\{\begin{array}{l}{x^2}+{y^2}=4\\ y=kx+4\end{array}\right.$£¬µÃ£¨1+k2£©x2+8kx+12=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öÔÚÒÔEFΪֱ¾¶µÄËùÓÐÔ²ÖУ¬´æÔÚÔ²P£º5x2+5y2-16x-8y+12=0»òx2+y2=4£¬Ê¹µÃÔ²P¾¹ýµãM£¨2£¬0£©£®
½â´ð ½â£º£¨1£©ÉèÔ²ÐÄC£¨a£¬a£©£¬°ë¾¶Îªr£®ÒòΪԲC¾¹ýµã$A£¨-\sqrt{3}£¬-1£©£¬B£¨1£¬\sqrt{3}£©$ËùÒÔ|AC|=|BC|=r£¬¡à$\left\{\begin{array}{l}{£¨-\sqrt{3}-a£©^2}+{£¨-1-a£©^2}={r^2}\\{£¨1-a£©^2}+{£¨\sqrt{3}-a£©^2}={r^2}\end{array}\right.$µÃ$\left\{\begin{array}{l}a=0\\ r=2\end{array}\right.$£¬ËùÒÔÔ²CµÄ·½³ÌÊÇx2+y2=4£®-----£¨2·Ö£©
£¨2£©ÒòΪ$\overrightarrow{OP}$•$\overrightarrow{OQ}$=2¡Á2¡Ácos£¼$\overrightarrow{OP}$£¬$\overrightarrow{OQ}$£¾=-2£¬ÇÒ$\overrightarrow{OP}$Óë$\overrightarrow{OQ}$µÄ¼Ð½ÇΪ¡ÏPOQ£¬
ËùÒÔcos¡ÏPOQ=-$\frac{1}{2}$£¬¡ÏPOQ=120¡ã£¬ËùÒÔÔ²ÐÄCµ½Ö±Ïßl£ºkx-y+1=0µÄ¾àÀëd=1£¬
ÓÖd=$\frac{1}{{\sqrt{{k^2}+1}}}$£¬ËùÒÔk=0£®------£¨5·Ö£©
£¨ÁªÁ¢Ö±ÏßÓëÔ²µÄ·½³Ì½áºÏÉè¶ø²»ÇóÇó½â×ÃÇ鏸·Ö£©
£¨3£©£¨¢¡£©µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬Ö±Ïßm¾¹ýÔ²CµÄÔ²ÐÄC£¬´ËʱֱÏßmÓëÔ²CµÄ½»µãΪE£¨0£¬2£©£¬F£¨0£¬-2£©£¬EF¼´ÎªÔ²CµÄÖ±¾¶£¬¶øµãM£¨2£¬0£©ÔÚÔ²CÉÏ£¬¼´Ô²CÒ²ÊÇÂú×ãÌâÒâµÄÔ²----£¨7·Ö£©
£¨¢¢£©µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßm£ºy=kx+4£¬ÓÉ$\left\{\begin{array}{l}{x^2}+{y^2}=4\\ y=kx+4\end{array}\right.$£¬
ÏûÈ¥yÕûÀí£¬µÃ£¨1+k2£©x2+8kx+12=0£¬ÓÉ¡÷=64k2-48£¨1+k2£©£¾0£¬µÃ$k£¾\sqrt{3}$»ò$k£¼-\sqrt{3}$£®
ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬ÔòÓÐ$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{8k}{{1+{k^2}}}\\{x_1}{x_2}=\frac{12}{{1+{k^2}}}\end{array}\right.$¢Ù---£¨8·Ö£©
ÓÉ¢ÙµÃ${y_1}{y_2}=£¨k{x_1}+4£©£¨k{x_2}+4£©={k^2}{x_1}{x_2}+4k£¨{x_1}+{x_2}£©+16=\frac{{16-4{k^2}}}{{1+{k^2}}}$£¬¢Ú${y_1}+{y_2}=k{x_1}+4+k{x_2}+4=k£¨{x_1}+{x_2}£©+8=\frac{8}{{1+{k^2}}}$£¬¢Û
Èô´æÔÚÒÔEFΪֱ¾¶µÄÔ²P¾¹ýµãM£¨2£¬0£©£¬ÔòME¡ÍMF£¬ËùÒÔ$\overrightarrow{ME}•\overrightarrow{MF}=0$£¬
Òò´Ë£¨x1-2£©£¨x2-2£©+y1y2=0£¬¼´x1x2-2£¨x1+x2£©+4+y1y2=0£¬-----£¨9·Ö£©
Ôò$\frac{12}{{1+{k^2}}}+\frac{16k}{{1+{k^2}}}+4+\frac{{16-4{k^2}}}{{1+{k^2}}}=0$£¬ËùÒÔ16k+32=0£¬k=-2£¬Âú×ãÌâÒ⣮----£¨10·Ö£©
´ËʱÒÔEFΪֱ¾¶µÄÔ²µÄ·½³ÌΪx2+y2-£¨x1+x2£©x-£¨y1+y2£©y+x1x2+y1y2=0£¬
¼´${x^2}+{y^2}-\frac{16}{5}x-\frac{8}{5}y+\frac{12}{5}=0$£¬Ò༴5x2+5y2-16x-8y+12=0£®----£¨11·Ö£©
×ÛÉÏ£¬ÔÚÒÔEFΪֱ¾¶µÄËùÓÐÔ²ÖУ¬´æÔÚÔ²P£º5x2+5y2-16x-8y+12=0»òx2+y2=4£¬Ê¹µÃÔ²P¾¹ýµãM£¨2£¬0£©£®----£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éʵÊýkµÄÖµµÄÇ󷨣¬¿¼²éÔÚÒÔEFΪֱ¾¶µÄËùÓÐÔ²ÖУ¬ÊÇ·ñ´æÔÚÕâÑùµÄÔ²P£¬Ê¹µÃÔ²P¾¹ýµãM£¨2£¬0£©µÄÅжÏÓëÇ󷨣¬½âÌâʱҪעÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ×éºÅ | ·Ö×é | »Ø´ðÕýÈ·µÄÈËÊý | »Ø´ðÕýÈ·µÄÈËÊý Õ¼±¾×éµÄƵÂÊ |
| µÚ1×é | [15£¬25£© | a | 0.5 |
| µÚ2×é | [25£¬35£© | 18 | x |
| µÚ3×é | [35£¬45£© | b | 0.9 |
| µÚ4×é | [45£¬55£© | 9 | 0.36 |
| µÚ5×é | [55£¬65] | 3 | y |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÈÎÒâx¡ÊR£¬f£¨¦Ð+x£©=f£¨x£© | B£® | ÈÎÒâx¡ÊR£¬$f£¨\frac{¦Ð}{2}+x£©=f£¨\frac{¦Ð}{2}-x£©$ | ||
| C£® | ²»´æÔÚ${x_0}¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬Ê¹f£¨x0£©=0 | D£® | ²»´æÔÚ${x_0}¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬Ê¹$f£¨{x_0}£©£¾\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ¼×°à | ÒÒ°à | ºÏ¼Æ | |
| ÓÅÐã | |||
| ²»ÓÅÐã | |||
| ºÏ¼Æ | 40 |
| P£¨¦Ö2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ·ÖÊý·ÖÖµ | [0£¬30£© | [30£¬60£© | [60£¬90£© | [90£¬120£© | [120£¬150£© |
| ÎÄ¿ÆÆµÊý | 2 | 4 | 8 | 3 | 3 |
| Àí¿ÆÆµÊý | 3 | 7 | 12 | 20 | 8 |
| ÎÄ¿Æ | Àí¿Æ | |
| ¸ÅÄî | 15 | 30 |
| ÆäËü | 5 | 20 |
| P£¨K2¡Ýk£© | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com