11£®ÒÑÖªÔ²C¾­¹ýµã$A£¨-\sqrt{3}£¬-1£©£¬B£¨1£¬\sqrt{3}£©$£¬ÇÒÔ²ÐÄCÔÚÖ±Ïßy=xÉÏ£¬ÓÖÖ±Ïßl£ºy=kx+1ÓëÔ²CÏཻÓÚP£¬QÁ½µã£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©Èô$\overrightarrow{OP}•\overrightarrow{OQ}=-2$£¨µãOΪԭµã£©£¬ÇóʵÊýkµÄÖµ£»
£¨3£©¹ýµã£¨0£¬4£©×÷¶¯Ö±Ïßm½»Ô²CÓÚE£¬FÁ½µã£®ÊÔÎÊ£ºÔÚÒÔEFΪֱ¾¶µÄËùÓÐÔ²ÖУ¬ÊÇ·ñ´æÔÚÕâÑùµÄÔ²P£¬Ê¹µÃÔ²P¾­¹ýµãM£¨2£¬0£©£¿Èô´æÔÚ£¬Çó³öÔ²PµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèÔ²ÐÄC£¨a£¬a£©£¬°ë¾¶Îªr£®|AC|=|BC|=r£¬ÓÉ´ËÄÜÇó³öÔ²CµÄ·½³Ì£®
£¨2£©ÓÉ$\overrightarrow{OP}$•$\overrightarrow{OQ}$=2¡Á2¡Ácos£¼$\overrightarrow{OP}$£¬$\overrightarrow{OQ}$£¾=-2£¬µÃ¡ÏPOQ=120¡ã£¬Ô²ÐÄCµ½Ö±Ïßl£ºkx-y+1=0µÄ¾àÀëd=1£¬ÓÉ´ËÄÜÇó³ök=0£®
£¨3£©µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬Ô²CÒ²ÊÇÂú×ãÌâÒâµÄÔ²£»µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßm£ºy=kx+4£¬ÓÉ$\left\{\begin{array}{l}{x^2}+{y^2}=4\\ y=kx+4\end{array}\right.$£¬µÃ£¨1+k2£©x2+8kx+12=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öÔÚÒÔEFΪֱ¾¶µÄËùÓÐÔ²ÖУ¬´æÔÚÔ²P£º5x2+5y2-16x-8y+12=0»òx2+y2=4£¬Ê¹µÃÔ²P¾­¹ýµãM£¨2£¬0£©£®

½â´ð ½â£º£¨1£©ÉèÔ²ÐÄC£¨a£¬a£©£¬°ë¾¶Îªr£®ÒòΪԲC¾­¹ýµã$A£¨-\sqrt{3}£¬-1£©£¬B£¨1£¬\sqrt{3}£©$ËùÒÔ|AC|=|BC|=r£¬¡à$\left\{\begin{array}{l}{£¨-\sqrt{3}-a£©^2}+{£¨-1-a£©^2}={r^2}\\{£¨1-a£©^2}+{£¨\sqrt{3}-a£©^2}={r^2}\end{array}\right.$µÃ$\left\{\begin{array}{l}a=0\\ r=2\end{array}\right.$£¬ËùÒÔÔ²CµÄ·½³ÌÊÇx2+y2=4£®-----£¨2·Ö£©
£¨2£©ÒòΪ$\overrightarrow{OP}$•$\overrightarrow{OQ}$=2¡Á2¡Ácos£¼$\overrightarrow{OP}$£¬$\overrightarrow{OQ}$£¾=-2£¬ÇÒ$\overrightarrow{OP}$Óë$\overrightarrow{OQ}$µÄ¼Ð½ÇΪ¡ÏPOQ£¬
ËùÒÔcos¡ÏPOQ=-$\frac{1}{2}$£¬¡ÏPOQ=120¡ã£¬ËùÒÔÔ²ÐÄCµ½Ö±Ïßl£ºkx-y+1=0µÄ¾àÀëd=1£¬
ÓÖd=$\frac{1}{{\sqrt{{k^2}+1}}}$£¬ËùÒÔk=0£®------£¨5·Ö£©
£¨ÁªÁ¢Ö±ÏßÓëÔ²µÄ·½³Ì½áºÏÉè¶ø²»ÇóÇó½â×ÃÇ鏸·Ö£©
£¨3£©£¨¢¡£©µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬Ö±Ïßm¾­¹ýÔ²CµÄÔ²ÐÄC£¬´ËʱֱÏßmÓëÔ²CµÄ½»µãΪE£¨0£¬2£©£¬F£¨0£¬-2£©£¬EF¼´ÎªÔ²CµÄÖ±¾¶£¬¶øµãM£¨2£¬0£©ÔÚÔ²CÉÏ£¬¼´Ô²CÒ²ÊÇÂú×ãÌâÒâµÄÔ²----£¨7·Ö£©
£¨¢¢£©µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßm£ºy=kx+4£¬ÓÉ$\left\{\begin{array}{l}{x^2}+{y^2}=4\\ y=kx+4\end{array}\right.$£¬
ÏûÈ¥yÕûÀí£¬µÃ£¨1+k2£©x2+8kx+12=0£¬ÓÉ¡÷=64k2-48£¨1+k2£©£¾0£¬µÃ$k£¾\sqrt{3}$»ò$k£¼-\sqrt{3}$£®
ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬ÔòÓÐ$\left\{\begin{array}{l}{x_1}+{x_2}=-\frac{8k}{{1+{k^2}}}\\{x_1}{x_2}=\frac{12}{{1+{k^2}}}\end{array}\right.$¢Ù---£¨8·Ö£©
ÓÉ¢ÙµÃ${y_1}{y_2}=£¨k{x_1}+4£©£¨k{x_2}+4£©={k^2}{x_1}{x_2}+4k£¨{x_1}+{x_2}£©+16=\frac{{16-4{k^2}}}{{1+{k^2}}}$£¬¢Ú${y_1}+{y_2}=k{x_1}+4+k{x_2}+4=k£¨{x_1}+{x_2}£©+8=\frac{8}{{1+{k^2}}}$£¬¢Û
Èô´æÔÚÒÔEFΪֱ¾¶µÄÔ²P¾­¹ýµãM£¨2£¬0£©£¬ÔòME¡ÍMF£¬ËùÒÔ$\overrightarrow{ME}•\overrightarrow{MF}=0$£¬
Òò´Ë£¨x1-2£©£¨x2-2£©+y1y2=0£¬¼´x1x2-2£¨x1+x2£©+4+y1y2=0£¬-----£¨9·Ö£©
Ôò$\frac{12}{{1+{k^2}}}+\frac{16k}{{1+{k^2}}}+4+\frac{{16-4{k^2}}}{{1+{k^2}}}=0$£¬ËùÒÔ16k+32=0£¬k=-2£¬Âú×ãÌâÒ⣮----£¨10·Ö£©
´ËʱÒÔEFΪֱ¾¶µÄÔ²µÄ·½³ÌΪx2+y2-£¨x1+x2£©x-£¨y1+y2£©y+x1x2+y1y2=0£¬
¼´${x^2}+{y^2}-\frac{16}{5}x-\frac{8}{5}y+\frac{12}{5}=0$£¬Ò༴5x2+5y2-16x-8y+12=0£®----£¨11·Ö£©
×ÛÉÏ£¬ÔÚÒÔEFΪֱ¾¶µÄËùÓÐÔ²ÖУ¬´æÔÚÔ²P£º5x2+5y2-16x-8y+12=0»òx2+y2=4£¬Ê¹µÃÔ²P¾­¹ýµãM£¨2£¬0£©£®----£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÔ²µÄ·½³ÌµÄÇ󷨣¬¿¼²éʵÊýkµÄÖµµÄÇ󷨣¬¿¼²éÔÚÒÔEFΪֱ¾¶µÄËùÓÐÔ²ÖУ¬ÊÇ·ñ´æÔÚÕâÑùµÄÔ²P£¬Ê¹µÃÔ²P¾­¹ýµãM£¨2£¬0£©µÄÅжÏÓëÇ󷨣¬½âÌâʱҪעÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÈçͼÊÇÒ»¸ö¼¸ºÎÌåµÄÈýÊÓͼ£®
£¨1£©Ð´³öÕâ¸ö¼¸ºÎÌåµÄÃû³Æ£»
£¨2£©¸ù¾ÝËùʾÊý¾Ý¼ÆËãÕâ¸ö¼¸ºÎÌåµÄ±íÃæ»ý£»
£¨3£©Èç¹ûÒ»Ö»ÂìÒÏÒª´ÓÕâ¸ö¼¸ºÎÌåÖеĵãB³ö·¢£¬ÑرíÃæÅÀµ½ACµÄÖеãD£¬ÇëÇó³öÕâ¸ö·ÏßµÄ×î¶Ì·³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÎªÁËÁ˽âËÄ´¨Ê¡¸÷¾°µãÔÚ´óÖÚÖеÄÊìÖª¶È£¬Ëæ»ú¶Ô15¡«65ËêµÄÈËȺ³éÑùÁËnÈË£¬»Ø´ðÎÊÌâ¡°ËÄ´¨Ê¡ÓÐÄöÖøÃûµÄÂÃÓξ°µã£¿¡±Í³¼Æ½á¹ûÈç±í£®
×éºÅ·Ö×黨´ðÕýÈ·µÄÈËÊý»Ø´ðÕýÈ·µÄÈËÊý
Õ¼±¾×éµÄƵÂÊ
µÚ1×é[15£¬25£©a0.5
µÚ2×é[25£¬35£©18x
µÚ3×é[35£¬45£©b0.9
µÚ4×é[45£¬55£©90.36
µÚ5×é[55£¬65]3y
£¨1£©·Ö±ðÇó³öa£¬b£¬x£¬yµÄÖµ£»
£¨2£©´ÓµÚ2£¬3£¬4×黨´ðÕýÈ·µÄÈËÖÐÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡6ÈË£¬ÇóµÚ2£¬3£¬4×éÿ×é¸÷³éÈ¡¶àÉÙÈË£¿
£¨3£©Í¨¹ýÖ±·½Í¼Çó³öÄêÁäµÄÖÚÊý£¬Æ½¾ùÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¹ØÓÚº¯Êýf£¨x£©=sinxcosxµÄÐÔÖʵÄÃèÊö£¬²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÈÎÒâx¡ÊR£¬f£¨¦Ð+x£©=f£¨x£©B£®ÈÎÒâx¡ÊR£¬$f£¨\frac{¦Ð}{2}+x£©=f£¨\frac{¦Ð}{2}-x£©$
C£®²»´æÔÚ${x_0}¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬Ê¹f£¨x0£©=0D£®²»´æÔÚ${x_0}¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬Ê¹$f£¨{x_0}£©£¾\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®0.5-1+40.5=4£¬lg2+lg5-£¨$\frac{¦Ð}{23}$£©0=0£¬10lg2=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬AD¡ÍAB£¬DC¡ÎAB£¬$AD=AE=DC=\frac{1}{2}AB=4$£¬¡÷MDCÊǵȱßÈý½ÇÐΣ¬ÇÒÆ½ÃæMDC¡ÍÆ½ÃæABCD£®
£¨¢ñ£©Ö¤Ã÷£ºEC¡ÎÆ½ÃæMAD£»
£¨¢ò£©ÇóÈýÀâ×¶B-AMCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ax+1n£¨x-1£©£¬ÆäÖÐaΪ³£Êý£®
£¨1£©Èôh£¨x£©=f£¨x+1£©£¬ÊÔÌÖÂÛh£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èô$a=\frac{1}{1-e}$ʱ£¬´æÔÚxʹµÃ²»µÈʽ$\sqrt{{f^2}£¨x£©}-\frac{e}{e-1}¡Ü\frac{21nx+bx}{2x}$³ÉÁ¢£¬ÇóʵÊýbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÎªÁËÑо¿¡°½Ìѧ·½Ê½¡±¶Ô½ÌѧÖÊÁ¿µÄÓ°Ï죬ij¸ßÖÐÊýѧÀÏʦ·Ö±ðÓÃÁ½ÖÖ²»Í¬µÄ½Ìѧ·½Ê½¶ÔÈëѧÊýѧƽ¾ù·ÖÊýºÍÓÅÐãÂʶ¼ÏàͬµÄ¼×¡¢ÒÒÁ½¸ö¸ßÒ»ÐÂ°à½øÐнÌѧ£¨Çڷ̶ܳȺÍ×Ô¾õÐÔ¶¼Ò»Ñù£©£®ÒÔϾ¥Ò¶Í¼Îª¼×¡¢ÒÒÁ½°àѧÉúµÄÊýѧÆÚÄ©¿¼ÊԳɼ¨£®Ñ§Ð£¹æ¶¨£º³É¼¨²»µÍÓÚ75·ÖµÄΪÓÅÐ㣮

£¨1£©ÇëÌîдÏÂÃæµÄ2¡Á2ÁÐÁª±í£º
¼×°àÒÒ°àºÏ¼Æ
ÓÅÐã
²»ÓÅÐã
ºÏ¼Æ40
£¨2£©ÅжÏÓжà´ó°ÑÎÕÈÏΪ¡°³É¼¨ÓÅÐãÓë½Ìѧ·½Ê½Óйء±£®
ÏÂÃæÁÙ½ç±í½ö¹©²Î¿¼£º
P£¨¦Ö2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£º¦Ö2=$\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³Ð£ÓÐ1400Ãû¿¼Éú²Î¼ÓÊÐÄ£Ä⿼ÊÔ£¬ÏÖ²ÉÓ÷ֲã³éÑùµÄ·½·¨´ÓÎÄ¡¢Àí¿¼ÉúÖзֱð³éÈ¡20·ÝºÍ50·ÝÊýѧÊÔ¾í£¬½øÐгɼ¨·ÖÎö£®µÃµ½ÏÂÃæµÄ³É¼¨ÆµÂÊ·Ö²¼±í£º
·ÖÊý·ÖÖµ[0£¬30£©[30£¬60£©[60£¬90£©[90£¬120£©[120£¬150£©
ÎÄ¿ÆÆµÊý24833
Àí¿ÆÆµÊý3712208
£¨1£©¹À¼ÆÎÄ¿ÆÊýѧƽ¾ù·Ö¼°Àí¿Æ¿¼ÉúµÄ¼°¸ñÈËÊý£¨90·ÖΪ¼°¸ñ·ÖÊýÏߣ©£»
£¨2£©ÔÚÊÔ¾í·ÖÎöÖУ¬·¢ÏÖ¸ÅÄîÐÔʧ·Ö·Ç³£ÑÏÖØ£¬Í³¼Æ½á¹ûÈçÏ£º
ÎÄ¿ÆÀí¿Æ
¸ÅÄî1530
ÆäËü520
ÎÊÊÇ·ñÓÐ90%µÄ°ÑÎÕÈÏΪ¸ÅÄîʧ·ÖÓëÎÄ¡¢Àí¿¼ÉúµÄ²»Í¬Óйأ¿£¨±¾Ìâ¿ÉÒԲο¼¶ÀÁ¢ÐÔ¼ìÑéÁÙ½çÖµ±í£©
¸½²Î¿¼¹«Ê½ÓëÊý¾Ý£º${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$
P£¨K2¡Ýk£©0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸